powered by
Substitute for rowMeans(!is.na(data)), but it also checks if input is NULL or is a dataframe
rowMeans(!is.na(data))
prop_complete_row(data)
a dataframe
numeric vector of the proportion of missing values in each row
pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() pct_miss() prop_complete() prop_complete_row() prop_miss()
pct_miss_case()
prop_miss_case()
pct_miss_var()
prop_miss_var()
pct_complete_case()
prop_complete_case()
pct_complete_var()
prop_complete_var()
miss_prop_summary()
miss_case_summary()
miss_case_table()
miss_summary()
miss_var_prop()
miss_var_run()
miss_var_span()
miss_var_summary()
miss_var_table()
n_complete()
n_complete_row()
n_miss()
n_miss_row()
pct_complete()
pct_miss()
prop_complete()
prop_complete_row()
prop_miss()
# NOT RUN { prop_complete_row(airquality) # }
Run the code above in your browser using DataLab