Learn R Programming

naniar (version 1.0.0)

miss_var_summary: Summarise the missingness in each variable

Description

Provide a summary for each variable of the number, percent missings, and cumulative sum of missings of the order of the variables. By default, it orders by the most missings in each variable.

Usage

miss_var_summary(data, order = FALSE, add_cumsum = FALSE, ...)

Value

a tibble of the percent of missing data in each variable

Arguments

data

a data.frame

order

a logical indicating whether to order the result by n_miss. Defaults to TRUE. If FALSE, order of variables is the order input.

add_cumsum

logical indicating whether or not to add the cumulative sum of missings to the data. This can be useful when exploring patterns of nonresponse. These are calculated as the cumulative sum of the missings in the variables as they are first presented to the function.

...

extra arguments

See Also

pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() pct_miss() prop_complete() prop_complete_row() prop_miss()

Examples

Run this code

miss_var_summary(airquality)
miss_var_summary(oceanbuoys, order = TRUE)

if (FALSE) {
# works with group_by from dplyr
library(dplyr)
airquality %>%
  group_by(Month) %>%
  miss_var_summary()
}

Run the code above in your browser using DataLab