Learn R Programming

nanny (version 0.1.8)

impute_missing: Impute feature value if missing from element-feature pairs

Description

impute_missing() takes as imput a `tbl` formatted as | <element> | <feature> | <value> | <...> | and returns a `tbl` with an edditional adjusted value column. This method uses scaled counts if present.

Usage

impute_missing(.data, .element, .feature, .value, .formula)

# S4 method for spec_tbl_df impute_missing(.data, .element, .feature, .value, .formula)

# S4 method for tbl_df impute_missing(.data, .element, .feature, .value, .formula)

Arguments

.data

A `tbl` formatted as | <element> | <feature> | <value> | <...> |

.element

The name of the element column

.feature

The name of the feature/gene column

.value

The name of the feature/gene value column

.formula

A formula with no response variable, representing the desired linear model where the first covariate is the factor of interest and the second covariate is the unwanted variation (of the kind ~ factor_of_intrest + batch)

Value

A `tbl` non-sparse value

A `tbl` with imputed abundnce

A `tbl` with imputed abundnce

Details

maturing

This function imputes the value of missing element-feature pair using the median of the element group defined by the formula

Examples

Run this code
# NOT RUN {
 impute_missing(mtcars_tidy, car_model, feature, value, ~1)

# }

Run the code above in your browser using DataLab