Learn R Programming

nbc4va (version 1.2)

ova2nbc: Translate open verbal autopsy arguments to train a NBC model

Description

A wrapper function for creating an nbc object with the parameters specified by the openVA package.

Usage

ova2nbc(symps.train, symps.test, causes.train, causes.table = NULL, ...)

Arguments

symps.train

Dataframe of verbal autopsy train data.

  • Columns (in order): ID, Cause, Symptom-1 to Symptom-n..

  • ID (vectorof char): case identifiers

  • Cause (vectorof char): observed causes for each case

  • Symptom-n.. (vectorsof char): "Y" for presence, "" for absence, "." for missing

Example:

ID Cause S1 S2 S3
"a1" "HIV" "Y" "" "."
"b2" "Stroke" "." "" "Y"
symps.test

Dataframe of verbal autopsy test data in the same format as symps.train.

  • If (causes.train is (vectorof char)): symps.test is assumed to not have a cause column

causes.train

The train vector or column for the causes of death to use.

  • If (vectorof char): cause of death values with number of values equal to nrow(symps.train); it is assumed that symps.test has no causes of death column

  • If (char): name of cause of death column from symps.train

causes.table

Character list of unique causes to learn.

  • If (NULL): set to unique causes of death in symps.train

...

Additional arguments to be passed to avoid errors if necessary.

Value

nbc An nbc object with the following modifications:

  • $id (vectorof char): set to test data ids

  • $prob (matrixof numeric): set to a matrix of likelihood for each cause of death for the test cases

  • $CSMF (vectorof char): set to the predicted CSMFs with names for the corresponding causes

References

Examples

Run this code
# NOT RUN {
library(openVA)  # install.packages("openVA")
library(nbc4va)

# Obtain some openVA formatted data
data(RandomVA3) # cols: deathId, cause, symptoms..
train <- RandomVA3[1:100, ]
test <- RandomVA3[101:200, ]

# Run naive bayes classifier on openVA data
results <- ova2nbc(train, test, "cause")

# Obtain the probabilities and predictions
prob <- results$prob.causes
pred <- results$pred.causes
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab