dgammanc: Computes the probability density function of the noncentral gamma function
Description
Computes the probability density function of the noncentral gamma function:
$$f(x; \alpha, \delta)=\sum_{i=0}^\infty \frac{e^{-\delta/2}(\delta/2)^{i}}{i!}\left[\frac{1}{\Gamma(\alpha+i)}e^{-x} x^{\alpha + i - 1}\right]$$
where $\Gamma(\alpha)$ is the central complete gamma function, $\alpha>0$, $\delta>0$, $x\ge 0$.
Usage
dgammanc(x, alpha, delta)
Arguments
x
a vector of positive quantiles.
alpha
a vector of the noncentral gamma parameter, alpha > 0.
delta
a vector of the noncentrality parameter, delta > 0.
References
Oliveira, IRC; Ferreira, DF Computing the noncentral gamma distribution, its inverse and the noncentrality parameter. Computational Statistics. Submmited for publications. 2012.