data<-I40_2020
library(psych)
# Principal Component Analysis (PCA)
pca<-principal(data,nfactors=2,covar=TRUE)
pca
# Feature selection with default values
PCA<-fs.dimred(pca,data)
PCA
# List of dropped, low communality value indicators
print(colnames(PCA$dropped_low))
# List of dropped, common communality value indicators
print(colnames(PCA$dropped_com))
# List of retained indicators
print(colnames(PCA$retained_DF))
# Principal Component Analysis (PCA) of correlation matrix
pca<-principal(cor(data,method="spearman"),nfactors=2,covar=TRUE)
pca
# Feature selection
min_comm<-0.25 # Minimal communality value
com_comm<-0.20 # Minimal common communality value
PCA<-fs.dimred(pca,cor(data,method="spearman"),min_comm,com_comm)
PCA
Run the code above in your browser using DataLab