# Plot function with feature selection
data("CrimesUSA1990.X")
df<-CrimesUSA1990.X
p<-ndr(df)
biplot(p,main="Biplot of CrimesUSA1990 without feature selection")
# Plot function with feature selection
# minimal eigen values (min_evalue) is 0.0065
# minimal communality value (min_communality) is 0.1
# minimal common communality value (com_communalities) is 0.1
p<-ndr(df,min_evalue = 0.0065,min_communality = 0.1,com_communalities = 0.1)
# Plot with default (cuts=0.3)
plot(p)
# Plot with higher cuts
plot(p,cuts=0.6)
# GNDA is used for clustering, where the similarity function is the 1-Euclidean distance
# Data is the swiss data
SIM<-1-normalize(as.matrix(dist(swiss)))
q<-ndr(SIM,covar = TRUE)
plot(q,interactive = FALSE)
Run the code above in your browser using DataLab