Learn R Programming

nda (version 0.2.4)

summary.nda: Summary function of Generalized Network-based Dimensionality Reduction and Analysis (GNDA)

Description

Print summary of Generalized Network-based Dimensionality Reduction and Analysis (GNDA)

Usage

# S3 method for nda
summary(object, digits = getOption("digits"), ...)

Value

communality

Communality estimates for each item. These are merely the sum of squared factor loadings for that item. It can be interpreted in correlation matrices.

loadings

A standard loading matrix of class “loadings".

uniqueness

Uniqueness values of indicators.

factors

Number of found factors.

scores

Estimates of the factor scores are reported (if covar=FALSE).

n.obs

Number of observations specified or found.

Arguments

object

an object of class 'nda'.

digits

the number of significant digits to use when add.stats = TRUE.

...

additional arguments affecting the summary produced.

Author

Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona

e-mail*: kosztyan.zsolt@gtk.uni-pannon.hu

References

Kosztyán, Z. T., Katona, A. I., Kurbucz, M. T., & Lantos, Z. (2024). Generalized network-based dimensionality analysis. Expert Systems with Applications, 238, 121779. <URL: https://doi.org/10.1016/j.eswa.2023.121779>.

See Also

biplot, plot, print, ndr.

Examples

Run this code
# Example of summary function of NDA without feature selection

data("CrimesUSA1990.X")
df<-CrimesUSA1990.X
p<-ndr(df)
summary(p)

# Example of summary function of NDA with feature selection
# minimal eigen values (min_evalue) is 0.0065
# minimal communality value (min_communality) is 0.1
# minimal common communality value (com_communalities) is 0.1

p<-ndr(df,min_evalue = 0.0065,min_communality = 0.1,com_communalities = 0.1)
summary(p)

Run the code above in your browser using DataLab