- Call
Callback function
- fval
Objective function for fitting
- pareto
in the case of multiple objectives TRUE (default value) provides pareto-optimal solution, while FALSE provides weighted mean of objective functions (see out_weights)
- X
A numeric data frame of input variables
- Y
A numeric data frame of output variables
- NDA
GNDA object, which is the result of model reduction and features selection
- fits
List of linear regrassion models
- NDA_weight
Weights of input variables (used in ndr
)
- NDA_min_evalue
Optimized minimal eigenvector centrality value (used in ndr
)
- NDA_min_communality
Optimized minimal communality value of indicators (used in ndr
)
- NDA_com_communalities
Optimized
minimal common communalities (used in ndr
)
- NDA_min_R
Optimized
minimal square correlation between indicators (used in ndr
)
- NSGA
Outpot structure of NSGA-II optimization (list), if the optimization value is true (see in mco::nsga2
)
- fn
Function (regression) name: NDLM