#
# Example using continuous outcomes (internal call of function metacont)
#
data(parkinson)
# Transform data from arm-based format to contrast-based format
p1 <- pairwise(list(Treatment1, Treatment2, Treatment3),
n=list(n1, n2, n3),
mean=list(y1, y2, y3),
sd=list(sd1, sd2, sd3),
data=parkinson, studlab=Study)
p1
# Conduct network meta-analysis
net1 <- netmeta(TE, seTE, treat1, treat2, studlab, data=p1)
net1
# Draw network graphs
netgraph(net1, points=TRUE, cex.points=3, cex=1.5,
thickness="se.fixed")
netgraph(net1, points=TRUE, cex.points=3, cex = 1.5,
plastic=TRUE, thickness="se.fixed",
iterate=TRUE)
netgraph(net1, points=TRUE, cex.points=3, cex = 1.5,
plastic=TRUE, thickness="se.fixed",
iterate=TRUE, start="eigen")
#
# Example using generic outcomes (internal call of function metagen)
#
# Calculate standard error for means y1, y2, y3
parkinson$se1 <- with(parkinson, sqrt(sd1^2/n1))
parkinson$se2 <- with(parkinson, sqrt(sd2^2/n2))
parkinson$se3 <- with(parkinson, sqrt(sd3^2/n3))
# Transform data from arm-based format to contrast-based format using
# means and standard errors (note, argument 'sm' has to be used to
# specify that argument 'TE' is a mean difference)
p2 <- pairwise(list(Treatment1, Treatment2, Treatment3),
TE=list(y1, y2, y3),
seTE=list(se1, se2, se3),
data=parkinson, studlab=Study,
sm="MD")
p2
# Compare pairwise objects p1 (based on continuous outcomes) and p2
# (based on generic outcomes)
all.equal(p1[, c("TE", "seTE", "studlab", "treat1", "treat2")],
p2[, c("TE", "seTE", "studlab", "treat1", "treat2")])
# Same result as network meta-analysis based on continuous outcomes
# (object net1)
net2 <- netmeta(TE, seTE, treat1, treat2, studlab, data=p2)
net2
#
# Example with binary data
#
data(smokingcessation)
# Transform data from arm-based format to contrast-based format
# (interal call of metabin function). Argument 'sm' has to be used for
# odds ratio as risk ratio (sm="RR") is default of metabin function.
p3 <- pairwise(list(treat1, treat2, treat3),
list(event1, event2, event3),
list(n1, n2, n3),
data=smokingcessation,
sm="OR")
p3
# Conduct network meta-analysis
net3 <- netmeta(TE, seTE, treat1, treat2, studlab, data=p3)
net3
#
# Example with incidence rates
#
data(dietaryfat)
# Transform data from arm-based format to contrast-based format
p4 <- pairwise(list(treat1, treat2, treat3),
list(d1, d2, d3),
time=list(years1, years2, years3),
studlab=ID,
data=dietaryfat)
p4
# Conduct network meta-analysis using incidence rate ratios (sm="IRR").
# Note, the argument 'sm' is not necessary as this is the default in R
# function metainc called internally
net4 <- netmeta(TE, seTE, treat1, treat2, studlab, data=p4, sm="IRR")
summary(net4)
Run the code above in your browser using DataLab