# Network meta-analysis of count mortality statistics
#
pw0 <- pairwise(treatment, event = r, n = N,
studlab = author, data = dat.woods2010, sm = "OR",
reference.group = "Placebo")
net0 <- netmeta(pw0)
oldopts <- options(width = 100)
# League table for common and random effects model with
# - network estimates in lower triangle
# - direct estimates in upper triangle
#
netleague(net0, digits = 2, bracket = "(", separator = " - ")
# \donttest{
# League table for common effects model
#
netleague(net0, random = FALSE, digits = 2)
# Change order of treatments according to treatment ranking (random
# effects model)
#
netleague(net0, common = FALSE, digits = 2, seq = netrank(net0))
#
print(netrank(net0), common = FALSE)
# Create a CSV file with league table for random effects model
#
league0 <- netleague(net0, digits = 2, bracket = "(", separator = " to ")
#
write.table(league0$random, file = "league0-random.csv",
row.names = FALSE, col.names = FALSE, sep = ",")
#
# Create Excel files with league tables
# (if R package writexl is available)
#
netleague(net0, digits = 2, bracket = "(", separator = " to ",
path = tempfile(fileext = ".xlsx"))
# Define order of treatments in depression dataset dat.linde2015
#
trts <- c("TCA", "SSRI", "SNRI", "NRI",
"Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum", "Placebo")
# Outcome labels
#
outcomes <- c("Early response", "Early remission")
# (1) Early response
#
pw1 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(resp1, resp2, resp3), n = list(n1, n2, n3),
studlab = id, data = dat.linde2015, sm = "OR")
#
net1 <- netmeta(pw1, common = FALSE,
seq = trts, ref = "Placebo", small = "undesirable")
# (2) Early remission
#
pw2 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(remi1, remi2, remi3), n = list(n1, n2, n3),
studlab = id, data = dat.linde2015, sm = "OR")
#
net2 <- netmeta(pw2, common = FALSE,
seq = trts, ref = "Placebo", small = "undesirable")
options(width = 200)
netleague(net1, digits = 2)
netleague(net1, digits = 2, ci = FALSE)
netleague(net2, digits = 2, ci = FALSE)
# League table for two outcomes with
# - network estimates of first outcome in lower triangle
# - network estimates of second outcome in upper triangle
#
netleague(net1, net2, digits = 2, ci = FALSE)
netleague(net1, net2, seq = netrank(net1), ci = FALSE)
netleague(net1, net2, seq = netrank(net2), ci = FALSE)
netrank(net1)
netrank(net2)
# Report results for network meta-analysis twice
#
netleague(net1, net1, seq = netrank(net1), ci = FALSE,
backtransf = FALSE)
netleague(net1, net1, seq = netrank(net1), ci = FALSE,
backtransf = FALSE, direct = TRUE)
# }
options(oldopts)
Run the code above in your browser using DataLab