#
# 1) COPD example
#
pw1 <- pairwise(treatment, event = r, n = N,
studlab = author, data = dat.woods2010, sm = "OR")
#
net1 <- netmeta(pw1)
#
print(netsplit(net1), digits = 2)
# \donttest{
print(netsplit(net1), digits = 2,
backtransf = FALSE, common = FALSE)
# Sort by increasing number of studies in direct comparisons
print(netsplit(net1), digits = 2, sortvar = k)
# Sort by decreasing number of studies in direct comparisons
print(netsplit(net1), digits = 2, sortvar = -k)
# Sort by increasing evidence proportion under common effects model
print(netsplit(net1), digits = 2, sortvar = prop.common)
# Sort by decreasing evidence proportion under common effects model
print(netsplit(net1), digits = 2, sortvar = -prop.common)
# Sort by decreasing evidence proportion under common effects model
# and number of studies
print(netsplit(net1), digits = 2, sortvar = cbind(-prop.common, -k))
#
# 2) Diabetes example
#
data(Senn2013)
#
net2 <- netmeta(TE, seTE, treat1.long, treat2.long,
studlab, data = Senn2013)
#
ns2 <- netsplit(net2)
#
print(ns2, digits = 2)
# Layout of Puhan et al. (2014), Table 1
print(ns2, digits = 2, ci = TRUE, test = FALSE)
# Forest plot showing comparisons contributing both direct and
# indirect evidence
#
forest(ns2, fontsize = 6, spacing = 0.5, addrow.subgroups = FALSE)
# Forest plot showing comparisons contributing direct evidence
#
forest(ns2, fontsize = 6, spacing = 0.5, addrow.subgroups = FALSE,
show = "with.direct")
# Forest plot only showing network estimates compared to reference
# group and prediction intervals
#
forest(ns2, fontsize = 8, spacing = 0.75, show = "all",
only.reference = TRUE, prediction = TRUE,
direct = FALSE, indirect = FALSE)
#
# 3) Another COPD example
#
pw3 <- pairwise(treatment, death, randomized, studlab = id,
data = dat.dong2013, sm = "OR")
net3 <- netmetabin(pw3)
netsplit(net3)
# }
Run the code above in your browser using DataLab