powered by
Splits the data into subsets and computes compositional mean for each.
condense(x, ...)# S4 method for CompositionMatrix condense(x, by, ignore_na = FALSE, ignore_zero = TRUE, verbose = FALSE, ...)# S4 method for GroupedComposition condense( x, by = NULL, ignore_na = FALSE, ignore_zero = TRUE, verbose = FALSE, ... )
# S4 method for CompositionMatrix condense(x, by, ignore_na = FALSE, ignore_zero = TRUE, verbose = FALSE, ...)
# S4 method for GroupedComposition condense( x, by = NULL, ignore_na = FALSE, ignore_zero = TRUE, verbose = FALSE, ... )
A CompositionMatrix object.
CompositionMatrix
Currently not used.
A vector or a list of grouping elements, each as long as the variables in x (see group()).
vector
x
group()
A logical scalar: should missing values be stripped before the computation proceeds?
logical
A logical scalar: should zeros be stripped before the computation proceeds?
A logical scalar: should R report extra information on progress?
N. Frerebeau
mean(), aggregate()
mean()
aggregate()
Other statistics: aggregate(), covariance(), dist, mahalanobis(), margin(), mean(), pip(), quantile(), scale(), variance(), variance_total(), variation()
covariance()
dist
mahalanobis()
margin()
pip()
quantile()
scale()
variance()
variance_total()
variation()
## Data from Aitchison 1986 data("slides") ## Coerce to a compositional matrix coda <- as_composition(slides, groups = 2) ## Compositional mean by group condense(coda)
Run the code above in your browser using DataLab