library(SIBER)
# ---- bring in SIBER demo data ----
# uncomenet to use
# str(demo.siber.data)
# ---- create community names data frame ----
# uncomment to use
# str(demo.siber.data.2)
demo.siber.data.2$group_name <- as.factor(demo.siber.data.2$group)
demo.siber.data.2$group <- as.numeric(demo.siber.data.2$group_name) |>
as.character()
demo.siber.data.2$community_names <- as.factor(demo.siber.data.2$community)
demo.siber.data.2$community <- as.numeric(demo.siber.data.2$community_names) |>
as.character()
c_names <- demo.siber.data.2 |>
dplyr::distinct(community, community_names)
demo.siber.data_2 <- demo.siber.data.2[,1:4]
# ---- create the siber object ----
siber.example <- createSiberObject(demo.siber.data_2)
# ---- view Bayesian estimates of mu and sigma produced by SIBER ---
# uncomment to use
# str(post_sam_siber)
# ---- extract posterior estimates of mu -----
mu_post <- extractPosteriorMeans(siber.example, post_sam_siber)
# ---- Bayesian estimates of layman metrics using SIBER ----
layman_b <- bayesianLayman(mu.post = mu_post)
# ---- use nichetools to extract Bayesian estimates of Layman metrics ----
layman_be <- extract_layman(layman_b, community_df = c_names)
layman_be
Run the code above in your browser using DataLab