## covariate is observation order and grouping factor is Mare
cs1 <- corAR1(0.2, form = ~ 1 | Mare)
# Pinheiro and Bates, p. 236
cs1AR1 <- corAR1(0.8, form = ~ 1 | Subject)
cs1AR1. <- Initialize(cs1AR1, data = Orthodont)
corMatrix(cs1AR1.)
# Pinheiro and Bates, p. 240
fm1Ovar.lme <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time),
data = Ovary, random = pdDiag(~sin(2*pi*Time)))
fm2Ovar.lme <- update(fm1Ovar.lme, correlation = corAR1())
# Pinheiro and Bates, pp. 255-258: use in gls
fm1Dial.gls <-
gls(rate ~(pressure + I(pressure^2) + I(pressure^3) + I(pressure^4))*QB,
Dialyzer)
fm2Dial.gls <- update(fm1Dial.gls,
weights = varPower(form = ~ pressure))
fm3Dial.gls <- update(fm2Dial.gls,
corr = corAR1(0.771, form = ~ 1 | Subject))
# Pinheiro and Bates use in nlme:
# from p. 240 needed on p. 396
fm1Ovar.lme <- lme(follicles ~ sin(2*pi*Time) + cos(2*pi*Time),
data = Ovary, random = pdDiag(~sin(2*pi*Time)))
fm5Ovar.lme <- update(fm1Ovar.lme,
correlation = corARMA(p = 1, q = 1))
# p. 396
fm1Ovar.nlme <- nlme(follicles~
A+B*sin(2*pi*w*Time)+C*cos(2*pi*w*Time),
data=Ovary, fixed=A+B+C+w~1,
random=pdDiag(A+B+w~1),
start=c(fixef(fm5Ovar.lme), 1) )
# p. 397
fm2Ovar.nlme <- update(fm1Ovar.nlme,
correlation=corAR1(0.311) )
Run the code above in your browser using DataLab