lme(fixed, data, random, correlation, weights, subset, method,
na.action, control, contrasts = NULL)
## S3 method for class 'lme':
update(object, fixed., \dots, evaluate = TRUE)
lme
, representing
a fitted linear mixed-effects model.~
operator and the terms, separated by +
operators, on
the right, an lmList
object, or update.formula
for details.fixed
, random
, correlation
, weights
, and
subset
. By default the variables are taken from the
environment from which l
~x1+...+xn | g1/.../gm
, with x1+...+xn
specifying the model for the random effects and g1/.../gm
the
grouping structure (m
mcorStruct
object describing the
within-group correlation structure. See the documentation of
corClasses
for a description of the available corStruct
classes. Defaults to NULL
,
corvarFunc
object or one-sided formula
describing the within-group heteroscedasticity structure. If given as
a formula, it is used as the argument to varFixed
,
corresponding to fixed variance weights. See the dodata
that should be used in the fit. This can be a logical
vector, or a numeric vector indicating which observation numbers are
to be included, or a character vector of th"REML"
the model is fit by
maximizing the restricted log-likelihood. If "ML"
the
log-likelihood is maximized. Defaults to "REML"
.NA
s. The default action (na.fail
) causes
lme
to print an error message and terminate if there are any
incomplete observations.lmeControl
.
Defaults to an empty list.contrasts.arg
of model.matrix.default
.TRUE
evaluate the new call else return the call.lme
representing the linear mixed-effects
model fit. Generic functions such as print
, plot
and
summary
have methods to show the results of the fit. See
lmeObject
for the components of the fit. The functions
resid
, coef
, fitted
, fixed.effects
, and
random.effects
can be used to extract some of its components.Bates, D.M. and Pinheiro, J.C. (1998) "Computational methods for multilevel models" available in PostScript or PDF formats at http://franz.stat.wisc.edu/pub/NLME/ Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Control", 3rd Edition, Holden-Day.
Davidian, M. and Giltinan, D.M. (1995) "Nonlinear Mixed Effects Models for Repeated Measurement Data", Chapman and Hall.
Laird, N.M. and Ware, J.H. (1982) "Random-Effects Models for Longitudinal Data", Biometrics, 38, 963-974.
Lindstrom, M.J. and Bates, D.M. (1988) "Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data", Journal of the American Statistical Association, 83, 1014-1022.
Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) "SAS Systems for Mixed Models", SAS Institute.
Pinheiro, J.C. and Bates., D.M. (1996) "Unconstrained Parametrizations for Variance-Covariance Matrices", Statistics and Computing, 6, 289-296.
Venables, W.N. and Ripley, B.D. (1997) "Modern Applied Statistics with S-plus", 2nd Edition, Springer-Verlag.
lmeControl
, lme.lmList
,
lme.groupedData
, lmeObject
,
lmList
, reStruct
, reStruct
,
varFunc
, pdClasses
,
corClasses
, varClasses
fm1 <- lme(distance ~ age, data = Orthodont) # random is ~ age
fm2 <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1)
summary(fm1)
summary(fm2)
Run the code above in your browser using DataLab