Learn R Programming

nlme (version 3.1-68.1)

predict.nlme: Predictions from an nlme Object

Description

The predictions at level $i$ are obtained by adding together the contributions from the estimated fixed effects and the estimated random effects at levels less or equal to $i$ and evaluating the model function at the resulting estimated parameters. If group values not included in the original grouping factors are present in newdata, the corresponding predictions will be set to NA for levels greater or equal to the level at which the unknown groups occur.

Usage

## S3 method for class 'nlme':
predict(object, newdata, level, asList, na.action,
naPattern, \dots)

Arguments

object
an object inheriting from class nlme, representing a fitted nonlinear mixed-effects model.
newdata
an optional data frame to be used for obtaining the predictions. All variables used in the nonlinear model, the fixed and the random effects models, as well as the grouping factors, must be present in the data frame. If missing, the fitted values
level
an optional integer vector giving the level(s) of grouping to be used in obtaining the predictions. Level values increase from outermost to innermost grouping, with level zero corresponding to the population predictions. Defaults to the highest o
asList
an optional logical value. If TRUE and a single value is given in level, the returned object is a list with the predictions split by groups; else the returned value is either a vector or a data frame, according to the le
na.action
a function that indicates what should happen when newdata contains NAs. The default action (na.fail) causes the function to print an error message and terminate if there are any incomplete observations.
naPattern
an expression or formula object, specifying which returned values are to be regarded as missing.
...
some methods for this generic require additional arguments. None are used in this method.

Value

  • if a single level of grouping is specified in level, the returned value is either a list with the predictions split by groups (asList = TRUE) or a vector with the predictions (asList = FALSE); else, when multiple grouping levels are specified in level, the returned object is a data frame with columns given by the predictions at different levels and the grouping factors.

See Also

nlme, fitted.lme

Examples

Run this code
fm1 <- nlme(height ~ SSasymp(age, Asym, R0, lrc),
            data = Loblolly,
            fixed = Asym + R0 + lrc ~ 1,
            random = Asym ~ 1,
            start = c(Asym = 103, R0 = -8.5, lrc = -3.3))
newLoblolly <- data.frame(age = c(5,10,15,20,25,30),
                    Seed = rep(301,6))
predict(fm1, newLoblolly, level = 0:1)

Run the code above in your browser using DataLab