########################################
### Pharmacokinetics of Theophylline ###
########################################
data(Theoph)
TheophODE <- Theoph
TheophODE$Dose[TheophODE$Time!=0] <- 0
TheophODE$Cmt <- rep(1,dim(TheophODE)[1])
OneComp <- list(DiffEq=list(
dy1dt = ~ -ka*y1 ,
dy2dt = ~ ka*y1-ke*y2),
ObsEq=list(
c1 = ~ 0,
c2 = ~ y2/CL*ke),
Parms=c("ka","ke","CL"),
States=c("y1","y2"),
Init=list(0,0))
TheophModel <- nlmeODE(OneComp,TheophODE)
## Not run:
# Theoph.nlme <- nlme(conc ~ TheophModel(ka,ke,CL,Time,Subject),
# data = TheophODE, fixed=ka+ke+CL~1, random = pdDiag(ka+CL~1),
# start=c(ka=0.5,ke=-2.5,CL=-3.2),
# control=list(returnObject=TRUE,msVerbose=TRUE),
# verbose=TRUE)
#
# plot(augPred(Theoph.nlme,level=0:1))
# ## End(Not run)
#########################################
### Pharmacokinetics of Indomethacine ###
#########################################
data(Indometh)
TwoComp <- list(DiffEq=list(
dy1dt = ~ -(k12+k10)*y1+k21*y2 ,
dy2dt = ~ -k21*y2 + k12*y1),
ObsEq=list(
c1 = ~ y1,
c2 = ~ 0),
States=c("y1","y2"),
Parms=c("k12","k21","k10","start"),
Init=list("start",0))
IndomethModel <- nlmeODE(TwoComp,Indometh)
## Not run:
# Indometh.nlme <- nlme(conc ~ IndomethModel(k12,k21,k10,start,time,Subject),
# data = Indometh, fixed=k12+k21+k10+start~1, random = pdDiag(start+k12+k10~1),
# start=c(k12=-0.05,k21=-0.15,k10=-0.10,start=0.70),
# control=list(msVerbose=TRUE),
# verbose=TRUE)
#
# plot(augPred(Indometh.nlme,level=0:1))
# ## End(Not run)
#################################################################
### Absorption model with estimation of time/rate of infusion ###
#################################################################
OneCompAbs <- list(DiffEq=list(
dA1dt = ~ -ka*A1,
dA2dt = ~ ka*A1 - CL/V1*A2),
ObsEq=list(
SC= ~0,
C = ~ A2/V1),
States=c("A1","A2"),
Parms=c("ka","CL","V1","F1"),
Init=list(0,0))
ID <- rep(seq(1:18),each=11)
Time <- rep(seq(0,100,by=10),18)
Dose <- c(rep(c(100,0,0,100,0,0,0,0,0,0,0),6),rep(c(100,0,0,0,0,0,0,100,0,0,0),6),
rep(c(100,0,0,0,0,0,0,0,0,0,0),6))
Rate <- c(rep(rep(0,11),6),rep(c(5,rep(0,10)),6),rep(rep(0,11),6))
Cmt <- c(rep(1,6*11),rep(c(2,0,0,0,0,0,0,1,0,0,0),6),rep(2,6*11))
Conc <- rep(0,18*11)
Data <- as.data.frame(list(ID=ID,Time=Time,Dose=Dose,Rate=Rate,Cmt=Cmt,Conc=Conc))
SimData <- groupedData( Conc ~ Time | ID,
data = Data,
labels = list( x = "Time", y = "Concentration"))
OneCompAbsModel <- nlmeODE(OneCompAbs,SimData)
kaSim <- rep(log(rep(0.05,18))+0.3*rnorm(18),each=11)
CLSim <- rep(log(rep(0.5,18))+0.2*rnorm(18),each=11)
V1Sim <- rep(log(rep(10,18))+0.1*rnorm(18),each=11)
F1Sim <- rep(log(0.8),18*11)
SimData$Sim <- OneCompAbsModel(kaSim,CLSim,V1Sim,F1Sim,SimData$Time,SimData$ID)
SimData$Conc <- SimData$Sim + 0.3*rnorm(dim(SimData)[1])
Data <- groupedData( Conc ~ Time | ID,
data = SimData,
labels = list( x = "Time", y = "Concentration"))
plot(Data,aspect=1/1)
#Estimation of model parameters
OneCompAbsModel <- nlmeODE(OneCompAbs,Data)
## Not run:
# fit1 <- nlme(Conc ~ OneCompAbsModel(ka,CL,V1,F1,Time,ID),
# data = Data, fixed=ka+CL+V1+F1~1, random = pdDiag(ka+CL+V1~1),
# start=c(ka=log(0.05),CL=log(0.5),V1=log(10.0),F1=log(0.8)),
# control=list(msVerbose=TRUE,pnlsTol=1),
# verbose=TRUE)
#
# plot(augPred(fit1,level=0:1,length.out=300),aspect=1/1)
# ## End(Not run)
#Estimation of rate of infusion
Data$Rate[Data$Rate==5] <- -1
OneCompAbs <- list(DiffEq=list(
dA1dt = ~ -ka*A1,
dA2dt = ~ ka*A1 - CL/V1*A2),
ObsEq=list(
SC= ~0,
C = ~ A2/V1),
States=c("A1","A2"),
Parms=c("ka","CL","V1","F1","Rate"),
Init=list(0,0))
OneCompAbsModel <- nlmeODE(OneCompAbs,Data)
## Not run:
# fit2 <- nlme(Conc ~ OneCompAbsModel(ka,CL,V1,F1,Rate,Time,ID),
# data = Data, fixed=ka+CL+V1+F1+Rate~1, random = pdDiag(ka+CL+V1~1),
# start=c(ka=log(0.05),CL=log(0.5),V1=log(10.0),F1=log(0.8),Rate=log(5)),
# control=list(msVerbose=TRUE,pnlsTol=1),
# verbose=TRUE)
#
# plot(augPred(fit2,level=0:1,length.out=300),aspect=1/1)
# ## End(Not run)
#Estimation of length of infusion
Data$Rate[Data$Rate==-1] <- -2
OneCompAbs <- list(DiffEq=list(
dA1dt = ~ -ka*A1,
dA2dt = ~ ka*A1 - CL/V1*A2),
ObsEq=list(
SC= ~0,
C = ~ A2/V1),
States=c("A1","A2"),
Parms=c("ka","CL","V1","F1","Tcrit"),
Init=list(0,0))
OneCompAbsModel <- nlmeODE(OneCompAbs,Data)
## Not run:
# fit3 <- nlme(Conc ~ OneCompAbsModel(ka,CL,V1,F1,Tcrit,Time,ID),
# data = Data, fixed=ka+CL+V1+F1+Tcrit~1, random = pdDiag(ka+CL+V1~1),
# start=c(ka=log(0.05),CL=log(0.5),V1=log(10.0),F1=log(0.8),Tcrit=log(20)),
# control=list(msVerbose=TRUE,pnlsTol=1),
# verbose=TRUE)
#
# plot(augPred(fit3,level=0:1,length.out=300),aspect=1/1)
# ## End(Not run)
############################################################
### Simulation and simultaneous estimation of PK/PD data ###
############################################################
PoolModel <- list(
DiffEq=list(
dy1dt = ~ -ke*y1,
dy2dt = ~ krel * (1-Emax*(y1/Vd)**gamma/(EC50**gamma+(y1/Vd)**gamma)) * y3 - kout * y2,
dy3dt = ~ Kin - krel * (1-Emax*(y1/Vd)**gamma/(EC50**gamma+(y1/Vd)**gamma))*y3),
ObsEq=list(
PK = ~ y1/Vd,
PD = ~ y2,
Pool = ~ 0),
States=c("y1","y2","y3"),
Parms=c("ke","Vd","Kin","kout","krel","Emax","EC50","gamma"),
Init=list(0,"Kin/kout","Kin/krel"))
ID <- rep(seq(1:12),each=2*12)
Time <- rep(rep(c(0,0.25,0.5,0.75,1,2,4,6,8,10,12,24),each=2),12)
Dose <- rep(c(100,rep(0,23)),12)
Cmt <- rep(rep(c(1,2),12),12)
Type <- rep(rep(c(1,2),12),12)
Conc <- rep(0,2*12*12)
Data <- as.data.frame(list(ID=ID,Time=Time,Dose=Dose,Cmt=Cmt,Type=Type,Conc=Conc))
SimData <- groupedData( Conc ~ Time | ID/Type,
data = Data,
labels = list( x = "Time", y = "Concentration"))
PKPDpoolModel <- nlmeODE(PoolModel,SimData)
keSim <- rep(log(rep(0.05,12))+0.1*rnorm(12),each=2*12)
VdSim <- rep(log(rep(10,12))+0.01*rnorm(12),each=2*12)
EC50Sim <- rep(log(rep(5,12))+0.1*rnorm(12),each=2*12)
KinSim <- rep(log(5),2*12*12)
koutSim <- rep(log(0.5),2*12*12)
krelSim <- rep(log(2),2*12*12)
EmaxSim <- rep(log(1),2*12*12)
gammaSim <- rep(log(3),2*12*12)
SimData$Sim <- PKPDpoolModel(keSim,VdSim,KinSim,koutSim,krelSim,EmaxSim,EC50Sim,
gammaSim,SimData$Time,SimData$ID,SimData$Type)
SimData$Conc[SimData$Type==1] <- SimData$Sim[SimData$Type==1]*(1 +
0.1*rnorm(length(SimData[SimData$Type==1,1])))
SimData$Conc[SimData$Type==2] <- SimData$Sim[SimData$Type==2]*(1 +
0.05*rnorm(length(SimData[SimData$Type==2,1])))
Data <- groupedData( Conc ~ Time | ID/Type,
data = SimData,
labels = list( x = "Time", y = "Concentration"))
plot(Data,display=1,aspect=1/1)
#Fixed parameters
Data$Emax <- rep(log(1),dim(Data)[1])
#Estimation of model parameters
PKPDpoolModel <- nlmeODE(PoolModel,Data)
## Not run:
# PKPDpool.nlme <- nlme(log(Conc) ~ log(PKPDpoolModel(ke,Vd,Kin,kout,krel,Emax,EC50,gamma,Time,ID,Type)),
# data = Data, fixed=ke+Vd+Kin+kout+krel+EC50+gamma~1, random = pdDiag(ke+Vd+EC50~1),
# groups=~ID,
# weights=varIdent(form=~1|Type),
# start=c(ke=log(0.05),Vd=log(10),Kin=log(5),kout=log(0.5),krel=log(2),EC50=log(5),gamma=log(3)),
# control=list(msVerbose=TRUE,msMaxIter=20,pnlsMaxIter=20,pnlsTol=1),
# verbose=TRUE)
#
# PKPDpool.nlme
# exp(fixef(PKPDpool.nlme))
#
# #Plot results
# ni <- 100
#
# TimeSim <- seq(from=0,to=24,length=ni)
# TimeSim <- rep(rep(TimeSim,each=2),12)
#
# SubjectSim <- rep(1:12,each=2*ni)
# TypeSim <- rep(rep(c(1,2),ni),12)
#
# IndCoef <- coef(PKPDpool.nlme)
# IpredSim <- PKPDpoolModel(
# rep(IndCoef[,1],each=2*ni),
# rep(IndCoef[,2],each=2*ni),
# rep(IndCoef[,3],each=2*ni),
# rep(IndCoef[,4],each=2*ni),
# rep(IndCoef[,5],each=2*ni),
# rep(rep(log(1),12),each=2*ni),
# rep(IndCoef[,6],each=2*ni),
# rep(IndCoef[,7],each=2*ni),
# TimeSim,SubjectSim,TypeSim)
#
# PopCoef <- fixef(PKPDpool.nlme)
# PredSim <- PKPDpoolModel( rep(rep(PopCoef[1],12),each=2*ni),
# rep(rep(PopCoef[2],12),each=2*ni),
# rep(rep(PopCoef[3],12),each=2*ni),
# rep(rep(PopCoef[4],12),each=2*ni),
# rep(rep(PopCoef[5],12),each=2*ni),
# rep(rep(log(1),12),each=2*ni),
# rep(rep(PopCoef[6],12),each=2*ni),
# rep(rep(PopCoef[7],12),each=2*ni),
# TimeSim,SubjectSim,TypeSim)
#
# plotPool <- as.data.frame(rbind(cbind(TimeSim,SubjectSim,PredSim,TypeSim,rep("Pred",2400)),
# cbind(TimeSim,SubjectSim,IpredSim,TypeSim,rep("Ipred",2400)),
# cbind(Data$Time,Data$ID,Data$Conc,Data$Type,rep("Obs",288))
# ))
# names(plotPool) <- c("Time","Subject","Conc","Type","Flag")
#
# plotPool$Subject <- as.factor(as.numeric(as.character(plotPool$Subject)))
# plotPool$Type <- as.factor(plotPool$Type)
# plotPool$Flag <- as.factor(plotPool$Flag)
# plotPool$Conc <- as.numeric(as.character(plotPool$Conc))
# plotPool$Time <- as.numeric(as.character(plotPool$Time))
#
# plotPoolPK <- subset(plotPool,Type==1)
# plotPoolPD <- subset(plotPool,Type==2)
#
# get(getOption("device"))(record=TRUE,width=9,height=9)
# xyplot (Conc~Time | Subject, data=plotPoolPK,
# layout=c(4,3),
# aspect=1/1,
# groups=Flag,
# xlab="Time since drug administration (hr)",
# ylab="PK concentration (ng/mL)",
# key=list(x=0,y=1,corner=c(0,0),transparent=TRUE,
# text = list(c("Population", "Individual","Observed")),
# lines = list(type=c("l","l","p"), pch=16, col=c(1,"red",1),
# lty=c(2,1,1)),columns=3),
# strip = function(...) strip.default(..., strip.names=c(FALSE,TRUE), style=1),
# panel = function(x, y, groups,...) {
# panel.grid(h=3,v=3,col="lightgray",lwd=0.7,...)
# panel.superpose.2(x,y,groups,type=c("l","p","l"),
# col=c("red",1,1), lty=c(1,1,2),pch=16, lwd=1.4,...)},
# par.strip.text=list(cex=1.0))
#
# xyplot (Conc~Time | Subject, data=plotPoolPD,
# layout=c(4,3),
# aspect=1/1,
# groups=Flag,
# xlab="Time since drug administration (hr)",
# ylab="PD concentration (ng/mL)",
# key=list(x=0,y=1,corner=c(0,0),transparent=TRUE,
# text = list(c("Population", "Individual","Observed")),
# lines = list(type=c("l","l","p"), pch=16, col=c(1,"red",1),
# lty=c(2,1,1)),columns=3),
# strip = function(...) strip.default(..., strip.names=c(FALSE,TRUE), style=1),
# panel = function(x, y, groups,...) {
# panel.grid(h=3,v=3,col="lightgray",lwd=0.7,...)
# panel.superpose.2(x,y,groups,type=c("l","p","l"),
# col=c("red",1,1), lty=c(1,1,2),pch=16, lwd=1.4,...)},
# par.strip.text=list(cex=1.0))
#
# ## End(Not run)
############################################################
### Minimal Model of Glucose and Insulin ###
############################################################
MMmodel <- list(
DiffEq=list(
dgdt = ~ Sg*Gb - (Sg+x)*g,
dxdt = ~ -p2*(x-Si*(i-Ib)),
didt = ~ -n*(i-Ib)+gamma*(g-h)*t),
ObsEq=list(
gc= ~ g,
xc= ~ 0,
ic= ~ i),
States=c("g","x","i"),
Parms=c("Sg","p2","Si","n","gamma","h","Gb","Ib","G0","I0"),
Init=list("G0",0,"I0")
)
id <- rep(seq(1:12),each=2*29)
time <- rep(rep(c(0,2,3,4,5,6,8,10,12,14,16,19,22,24,25,27,30,35,40,50,60,70,80,90,100,120,140,160,180),
each=2),12)
type <- rep(rep(c(1,2),29),12)
conc <- rep(0,2*12*29)
data <-as.data.frame(list(id=id,time=time,type=type,conc=conc))
MMData <- groupedData(conc~time|id/type,data=data,
labels=list(x="Time",y="Concentration"))
Sgsim <-rep(rep(log(0.025),12)+0.2*rnorm(12),each=2*29)
p2sim<-rep(rep(log(0.007),12)+0*rnorm(12),each=2*29)
Sisim<-rep(rep(log(0.001),12)+0.3*rnorm(12),each=2*29)
nsim<-rep(rep(log(0.15),12)+0*rnorm(12),each=2*29)
gammasim<-rep(rep(log(0.001),12)+0*rnorm(12),each=2*29)
hsim<-rep(rep(log(65),12)+0*rnorm(12),each=2*29)
Gbsim<-rep(rep(log(100),12)+0*rnorm(12),each=2*29)
Ibsim<-rep(rep(log(10),12)+0*rnorm(12),each=2*29)
G0sim<-rep(rep(log(250),12)+0.2*rnorm(12),each=2*29)
I0sim<-rep(rep(log(120),12)+0*rnorm(12),each=2*29)
MinModel <-nlmeODE(MMmodel,MMData)
data$sim<-MinModel(Sgsim,p2sim,Sisim,nsim,gammasim,hsim,Gbsim,Ibsim,G0sim,I0sim,
data$time,data$id,data$type)
data$conc[data$type==1] <- data$sim[data$type==1]*(1+0.2*rnorm(length(data[data$type==1,1])))
data$conc[data$type==2] <- data$sim[data$type==2]*(1+0.2*rnorm(length(data[data$type==2,1])))
data$Gb <- Gbsim
data$Ib <- Ibsim
MMData <- groupedData( conc ~ time | id/type,
data = data,
labels = list( x = "Time", y = "Concentration"))
plot(MMData,display=1,aspect=1/1)
MinModel <- nlmeODE(MMmodel,MMData)
## Not run:
# MM.nlme <-nlme(conc~MinModel(Sg,p2,Si,n,gamma,h,Gb,Ib,G0,I0,time,id,type),
# data=MMData, fixed=Sg+p2+Si+n+gamma+h+G0+I0~1,
# groups=~id,
# weights=varExp(0.2,form=~fitted(.)|type),
# random=pdDiag(Sg+Si+G0~1),
# start=c(Sg=log(0.025),p2=log(0.007),Si=log(0.001),n=log(0.15),
# gamma=log(0.001),h=log(65),G0=log(250),I0=log(120)),
# control=list(returnObject=TRUE,msVerbose=TRUE,msMaxIter=20,pnlsMaxIter=20,pnlsTol=1),
# verbose=TRUE)
#
# MM.nlme
# exp(fixef(MM.nlme))
#
# #Plot results
# ni <- 100
#
# TimeSim <- seq(from=0,to=180,length=ni)
# TimeSim <- rep(rep(TimeSim,each=2),12)
#
# SubjectSim <- rep(1:12,each=2*ni)
# TypeSim <- rep(rep(c(1,2),ni),12)
#
# IndCoef <- coef(MM.nlme)
# IpredSim <- MinModel(
# rep(IndCoef[,1],each=2*ni),
# rep(IndCoef[,2],each=2*ni),
# rep(IndCoef[,3],each=2*ni),
# rep(IndCoef[,4],each=2*ni),
# rep(IndCoef[,5],each=2*ni),
# rep(IndCoef[,6],each=2*ni),
# rep(rep(unique(MMData$Gb),12),each=2*ni),
# rep(rep(unique(MMData$Ib),12),each=2*ni),
# rep(IndCoef[,7],each=2*ni),
# rep(IndCoef[,8],each=2*ni),
# TimeSim,SubjectSim,TypeSim)
#
# PopCoef <- fixef(MM.nlme)
# PredSim <- MinModel( rep(rep(PopCoef[1],12),each=2*ni),
# rep(rep(PopCoef[2],12),each=2*ni),
# rep(rep(PopCoef[3],12),each=2*ni),
# rep(rep(PopCoef[4],12),each=2*ni),
# rep(rep(PopCoef[5],12),each=2*ni),
# rep(rep(PopCoef[6],12),each=2*ni),
# rep(rep(unique(MMData$Gb),12),each=2*ni),
# rep(rep(unique(MMData$Ib),12),each=2*ni),
# rep(rep(PopCoef[7],12),each=2*ni),
# rep(rep(PopCoef[8],12),each=2*ni),
# TimeSim,SubjectSim,TypeSim)
#
# plotMM <- as.data.frame(rbind(cbind(TimeSim,SubjectSim,PredSim,TypeSim,rep("Pred",2400)),
# cbind(TimeSim,SubjectSim,IpredSim,TypeSim,rep("Ipred",2400)),
# cbind(MMData$time,MMData$id,MMData$conc,MMData$type,rep("Obs",696))
# ))
# names(plotMM) <- c("Time","Subject","Conc","Type","Flag")
#
# plotMM$Subject <- as.factor(as.numeric(as.character(plotMM$Subject)))
# plotMM$Type <- as.factor(plotMM$Type)
# plotMM$Flag <- as.factor(plotMM$Flag)
# plotMM$Conc <- as.numeric(as.character(plotMM$Conc))
# plotMM$Time <- as.numeric(as.character(plotMM$Time))
#
# plotMMG <- subset(plotMM,Type==1)
# plotMMI <- subset(plotMM,Type==2)
#
# get(getOption("device"))(record=TRUE,width=9,height=9)
# xyplot (Conc~Time | Subject, data=plotMMG,
# layout=c(4,3),
# aspect=1/1,
# groups=Flag,
# xlab="Time (hr)",
# ylab="Glucose concentration",
# key=list(x=0,y=1,corner=c(0,0),transparent=TRUE,
# text = list(c("Population", "Individual","Observed")),
# lines = list(type=c("l","l","p"), lwd=3, pch=16, col=c(1,"red",1),
# lty=c(1,1,1)),columns=3),
# strip = function(...) strip.default(..., strip.names=c(FALSE,TRUE), style=1),
# panel = function(x, y, groups,...) {
# panel.abline(h=c(100,200,300,400),col="lightgray",lwd=0.7,...)
# panel.abline(v=c(0,50,100,150,200),col="lightgray",lwd=0.7,...)
# panel.superpose.2(x,y,groups,type=c("l","p","l"),
# col=c("red",1,1), lty=c(1,1,1),pch=16,cex=.5, lwd=2,...)},
# par.strip.text=list(cex=1.0))
#
# xyplot (Conc~Time | Subject, data=plotMMI,
# layout=c(4,3),
# aspect=1/1,
# groups=Flag,
# xlab="Time (hr)",
# ylab="Insulin concentration",
# key=list(x=0,y=1,corner=c(0,0),transparent=TRUE,
# text = list(c("Population", "Individual","Observed")),
# lines = list(type=c("l","l","p"), lwd=3, pch=16, col=c(1,"red",1),
# lty=c(1,1,1)),columns=3),
# strip = function(...) strip.default(..., strip.names=c(FALSE,TRUE), style=1),
# panel = function(x, y, groups,...) {
# panel.abline(h=c(100,200,300,400),col="lightgray",lwd=0.7,...)
# panel.abline(v=c(0,50,100,150,200),col="lightgray",lwd=0.7,...)
# panel.superpose.2(x,y,groups,type=c("l","p","l"),
# col=c("red",1,1), lty=c(1,1,1),pch=16,cex=.5, lwd=2,...)},
# par.strip.text=list(cex=1.0))
#
# ## End(Not run)
############################################################################
### Minimal Model of Glucose using observed insulin as forcing function ###
############################################################################
idata <- data$conc[data$type==2]
data <- data[data$type==1,]
data$i <- idata
MMmodel <- list(
DiffEq=list(
dgdt = ~ Sg*Gb - (Sg+x)*g,
dxdt = ~ -p2*(x-Si*(Insulin(t,id)-Ib))),
ObsEq=list(
gc= ~ g,
xc= ~ 0),
States=c("g","x"),
Parms=c("Sg","p2","Si","Gb","Ib","id","G0"),
Init=list("G0",0)
)
Insulin <- function(t,subject){
subject <- as.integer(log(subject))
dT <- MMData$time[MMData$id==subject & MMData$time>t][1]-rev(MMData$time[MMData$id==subject & MMData$time<=t])[1]
dInsulin <- MMData$i[MMData$id==subject & MMData$time>t][1]-rev(MMData$i[MMData$id==subject & MMData$time<=t])[1]
if(t>=max(MMData$time[MMData$id==subject])){
conc <- rev(MMData$i[MMData$id==subject & MMData$time<=t])[1]
}else{
conc <- rev(MMData$i[MMData$id==subject & MMData$time<=t])[1] +
dInsulin/dT*(t-rev(MMData$time[MMData$id==subject & MMData$time<=t])[1])
}
names(conc) <- NULL
return(conc)
}
MMData <- groupedData( conc ~ time | id,
data = data,
labels = list( x = "Time", y = "Concentration"))
plot(MMData,aspect=1/1)
MinModel <- nlmeODE(MMmodel,MMData)
## Not run:
# MMglucose.nlme <-nlme(log(conc)~log(MinModel(Sg,p2,Si,Gb,Ib,id,G0,time,id)),
# data=MMData, fixed=Sg+p2+Si+G0~1,
# random=pdDiag(Sg+Si+G0~1),
# start=c(Sg=log(0.03),p2=log(0.01),Si=log(0.001),G0=log(250)),
# control=list(returnObject=TRUE,msVerbose=TRUE,msMaxIter=20,pnlsMaxIter=20,pnlsTol=1),
# verbose=TRUE)
# MMglucose.nlme
# exp(fixef(MMglucose.nlme))
#
# #Plot results
# ni <- 100
#
# TimeSim <- seq(from=0,to=180,length=ni)
# TimeSim <- rep(rep(TimeSim,each=2),12)
#
# SubjectSim <- rep(1:12,each=2*ni)
#
# IndCoef <- coef(MMglucose.nlme)
# IpredSim <- MinModel(
# rep(IndCoef[,1],each=2*ni),
# rep(IndCoef[,2],each=2*ni),
# rep(IndCoef[,3],each=2*ni),
# rep(rep(unique(MMData$Gb),12),each=2*ni),
# rep(rep(unique(MMData$Ib),12),each=2*ni),
# SubjectSim,
# rep(IndCoef[,4],each=2*ni),
# TimeSim,SubjectSim)
#
# PopCoef <- fixef(MMglucose.nlme)
# PredSim <- MinModel( rep(rep(PopCoef[1],12),each=2*ni),
# rep(rep(PopCoef[2],12),each=2*ni),
# rep(rep(PopCoef[3],12),each=2*ni),
# rep(rep(unique(MMData$Gb),12),each=2*ni),
# rep(rep(unique(MMData$Ib),12),each=2*ni),
# SubjectSim,
# rep(rep(PopCoef[4],12),each=2*ni),
# TimeSim,SubjectSim)
#
# plotMM <- as.data.frame(rbind(cbind(TimeSim,SubjectSim,PredSim,rep("Pred",2400)),
# cbind(TimeSim,SubjectSim,IpredSim,rep("Ipred",2400)),
# cbind(MMData$time,MMData$id,MMData$conc,rep("Obs",348))
# ))
# names(plotMM) <- c("Time","Subject","Conc","Flag")
#
# plotMM$Subject <- as.factor(as.numeric(as.character(plotMM$Subject)))
# plotMM$Flag <- as.factor(plotMM$Flag)
# plotMM$Conc <- as.numeric(as.character(plotMM$Conc))
# plotMM$Time <- as.numeric(as.character(plotMM$Time))
#
# xyplot (Conc~Time | Subject, data=plotMMG,
# layout=c(4,3),
# aspect=1/1,
# groups=Flag,
# xlab="Time (hr)",
# ylab="Glucose concentration",
# key=list(x=0,y=1,corner=c(0,0),transparent=TRUE,
# text = list(c("Population", "Individual","Observed")),
# lines = list(type=c("l","l","p"), pch=16, lwd=3, col=c(1,"red",1),
# lty=c(1,1,1)),columns=3),
# strip = function(...) strip.default(..., strip.names=c(FALSE,TRUE), style=1),
# panel = function(x, y, groups,...) {
# panel.grid(h=3,v=3,col="lightgray",lwd=0.7,...)
# panel.superpose.2(x,y,groups,type=c("l","p","l"),
# col=c("red",1,1), lty=c(1,1,1),pch=16, cex=.5, lwd=3,...)},
# par.strip.text=list(cex=1.0))
#
#
# ## End(Not run)
Run the code above in your browser using DataLab