Learn R Programming

nloptr (version 2.0.3)

ccsaq: Conservative Convex Separable Approximation with Affine Approximation plus Quadratic Penalty

Description

This is a variant of CCSA ("conservative convex separable approximation") which, instead of constructing local MMA approximations, constructs simple quadratic approximations (or rather, affine approximations plus a quadratic penalty term to stay conservative)

Usage

ccsaq(
  x0,
  fn,
  gr = NULL,
  lower = NULL,
  upper = NULL,
  hin = NULL,
  hinjac = NULL,
  nl.info = FALSE,
  control = list(),
  ...
)

Arguments

x0

starting point for searching the optimum.

fn

objective function that is to be minimized.

gr

gradient of function fn; will be calculated numerically if not specified.

lower, upper

lower and upper bound constraints.

hin

function defining the inequality constraints, that is hin>=0 for all components.

hinjac

Jacobian of function hin; will be calculated numerically if not specified.

nl.info

logical; shall the original NLopt info been shown.

control

list of options, see nl.opts for help.

...

additional arguments passed to the function.

Value

List with components:

par

the optimal solution found so far.

value

the function value corresponding to par.

iter

number of (outer) iterations, see maxeval.

convergence

integer code indicating successful completion (> 1) or a possible error number (< 0).

message

character string produced by NLopt and giving additional information.

References

Krister Svanberg, ``A class of globally convergent optimization methods based on conservative convex separable approximations,'' SIAM J. Optim. 12 (2), p. 555-573 (2002).

See Also

mma

Examples

Run this code
# NOT RUN {
##  Solve the Hock-Schittkowski problem no. 100 with analytic gradients
x0.hs100 <- c(1, 2, 0, 4, 0, 1, 1)
fn.hs100 <- function(x) {
    (x[1]-10)^2 + 5*(x[2]-12)^2 + x[3]^4 + 3*(x[4]-11)^2 + 10*x[5]^6 +
                  7*x[6]^2 + x[7]^4 - 4*x[6]*x[7] - 10*x[6] - 8*x[7]
}
hin.hs100 <- function(x) {
    h <- numeric(4)
    h[1] <- 127 - 2*x[1]^2 - 3*x[2]^4 - x[3] - 4*x[4]^2 - 5*x[5]
    h[2] <- 282 - 7*x[1] - 3*x[2] - 10*x[3]^2 - x[4] + x[5]
    h[3] <- 196 - 23*x[1] - x[2]^2 - 6*x[6]^2 + 8*x[7]
    h[4] <- -4*x[1]^2 - x[2]^2 + 3*x[1]*x[2] -2*x[3]^2 - 5*x[6]	+11*x[7]
    return(h)
}
gr.hs100 <- function(x) {
   c(  2 * x[1] -  20,
      10 * x[2] - 120,
       4 * x[3]^3,
       6 * x[4] - 66,
      60 * x[5]^5,
      14 * x[6]   - 4 * x[7] - 10,
       4 * x[7]^3 - 4 * x[6] -  8 )}
hinjac.hs100 <- function(x) {
    matrix(c(4*x[1], 12*x[2]^3, 1, 8*x[4], 5, 0, 0,
        7, 3, 20*x[3], 1, -1, 0, 0,
        23, 2*x[2], 0, 0, 0, 12*x[6], -8,
        8*x[1]-3*x[2], 2*x[2]-3*x[1], 4*x[3], 0, 0, 5, -11), 4, 7, byrow=TRUE)
}

# incorrect result with exact jacobian
S <- ccsaq(x0.hs100, fn.hs100, gr = gr.hs100,
            hin = hin.hs100, hinjac = hinjac.hs100,
            nl.info = TRUE, control = list(xtol_rel = 1e-8))

# }
# NOT RUN {
S <- ccsaq(x0.hs100, fn.hs100, hin = hin.hs100,
            nl.info = TRUE, control = list(xtol_rel = 1e-8))
# }

Run the code above in your browser using DataLab