# NOT RUN {
### Minimize the Hartmann6 function
hartmann6 <- function(x) {
n <- length(x)
a <- c(1.0, 1.2, 3.0, 3.2)
A <- matrix(c(10.0, 0.05, 3.0, 17.0,
3.0, 10.0, 3.5, 8.0,
17.0, 17.0, 1.7, 0.05,
3.5, 0.1, 10.0, 10.0,
1.7, 8.0, 17.0, 0.1,
8.0, 14.0, 8.0, 14.0), nrow=4, ncol=6)
B <- matrix(c(.1312,.2329,.2348,.4047,
.1696,.4135,.1451,.8828,
.5569,.8307,.3522,.8732,
.0124,.3736,.2883,.5743,
.8283,.1004,.3047,.1091,
.5886,.9991,.6650,.0381), nrow=4, ncol=6)
fun <- 0.0
for (i in 1:4) {
fun <- fun - a[i] * exp(-sum(A[i,]*(x-B[i,])^2))
}
return(fun)
}
S <- mlsl(x0 = rep(0, 6), hartmann6, lower = rep(0,6), upper = rep(1,6),
nl.info = TRUE, control=list(xtol_rel=1e-8, maxeval=1000))
## Number of Iterations....: 4050
## Termination conditions: maxeval: 10000 xtol_rel: 1e-06
## Number of inequality constraints: 0
## Number of equality constraints: 0
## Optimal value of objective function: -3.32236801141328
## Optimal value of controls:
## 0.2016893 0.1500105 0.4768738 0.2753326 0.3116516 0.6573004
# }
Run the code above in your browser using DataLab