Learn R Programming

nloptr (version 2.0.3)

nl.grad: Numerical Gradients and Jacobians

Description

Provides numerical gradients and jacobians.

Usage

nl.grad(x0, fn, heps = .Machine$double.eps^(1/3), ...)

Arguments

x0

point as a vector where the gradient is to be calculated.

fn

scalar function of one or several variables.

heps

step size to be used.

additional arguments passed to the function.

Value

grad returns the gradient as a vector; jacobian returns the Jacobian as a matrix of usual dimensions.

Details

Both functions apply the ``central difference formula'' with step size as recommended in the literature.

Examples

Run this code
# NOT RUN {
  fn1 <- function(x) sum(x^2)
  nl.grad(seq(0, 1, by = 0.2), fn1)
  ## [1] 0.0  0.4  0.8  1.2  1.6  2.0
  nl.grad(rep(1, 5), fn1)
  ## [1] 2  2  2  2  2

  fn2 <- function(x) c(sin(x), cos(x))
  x <- (0:1)*2*pi
  nl.jacobian(x, fn2)
  ##      [,1] [,2]
  ## [1,]    1    0
  ## [2,]    0    1
  ## [3,]    0    0
  ## [4,]    0    0

# }

Run the code above in your browser using DataLab