# sample data
data(data20)
# computation of a dissimilarity matrix using the iof similarity measure
diss.matrix <- iof(data20)
# creating an object with results of hierarchical clustering
hca.object <- nomprox(diss = diss.matrix, data = data20, method = "complete",
clu.high = 5, eval = TRUE, prox = FALSE)
# quick clustering summary
summary(hca.object)
# quick cluster quality evaluation
print(hca.object)
# visualization of the evaluation criteria
eval.plot(hca.object)
# a dendrogram can be displayed if the object contains the prox component
hca.object <- nomprox(diss = diss.matrix, data = data20, method = "complete",
clu.high = 5, eval = TRUE, prox = TRUE)
# a quick dendrogram
plot(hca.object)
# a dendrogram with three designated clusters
dend.plot(hca.object, clusters = 3)
Run the code above in your browser using DataLab