if (FALSE) {
## Count regression comparisons
require(MASS)
house1 <- glm(Freq ~ Infl + Type + Cont, family=poisson, data=housing)
house2 <- glm(Freq ~ Infl + Sat, family=poisson, data=housing)
house3 <- glm(Freq ~ Infl, family=poisson, data=housing)
## house3 is nested within house1 and house2
anova(house3, house1, test="Chisq")
anova(house3, house2, test="Chisq")
## house 2 is not nested in house1, so this test is invalid
anova(house2, house1, test="Chisq")
## Use vuongtest() instead
vuongtest(house2, house1)
## Application to models with different distributional assumptions
require(pscl)
bio1 <- glm(art ~ fem + mar + phd + ment, family=poisson, data=bioChemists)
bio2 <- hurdle(art ~ fem + mar + phd + ment, data=bioChemists)
bio3 <- zeroinfl(art ~ fem + mar + phd + ment, data=bioChemists)
vuongtest(bio2, bio1)
vuongtest(bio3, bio1)
vuongtest(bio1, bio2)
vuongtest(bio1, bio3)
vuongtest(bio3, bio2)
## Application to latent variable models
require(lavaan)
HS.model <- 'visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
fit1 <- cfa(HS.model, data=HolzingerSwineford1939)
fit2 <- cfa(HS.model, data=HolzingerSwineford1939, group="school")
vuongtest(fit1, fit2)
## Supplying custom vcov function
require(lme4)
require(merDeriv)
fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy, REML=FALSE)
fm2 <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy, REML=FALSE)
vcl <- function(obj) vcov(obj, full=TRUE)
vuongtest(fm1, fm2, vc1=vcl, vc2=vcl, nested=TRUE)
}
Run the code above in your browser using DataLab