Learn R Programming

nordklimdata1 (version 1.2)

NordklimData: The Nordklim Dataset

Description

The NORDKLIM data set - monthly data for 7 climatic elements from 114 stations in 5 Nordic countries.

Usage

data(NordklimData)

Arguments

Format

A data frame with 71329 observations on the following 16 variables.
NordklimNumber
Nordklim number identifier
ClimateElement
Climate element identifier
FirstYear
First year of the dataset
January
Readings for January
February
Readings for February
March
Readings for March
April
Readings for April
May
Readings for May
June
Readings for June
July
Readings for July
August
Readings for August
September
Readings for September
October
Readings for October
November
Readings for November
December
Readings for December
CountryCode
Country code

Details

The NORDKLIM data set has 16 columns, the first three columns are the Nordklim number, climate element number and first year of the dataset, the next 12 columns are twelve months of readings, from January to December and the last column is the country code. Monthly climatic elements in the NORDKLIM data set:
Element number Climatic element Unit
Abbreviation 101 Mean temperature
0.1 C T 111
Mean maximum temperature 0.1 C Tx
112 Highest maximum temperature 0.1 C
Th 113 Day of Th
date Thd 121
Mean minimum temperature 0.1 C Tn
122 Lowest minimum temperature 0.1 C
Tl 123 Day of Tl
date Tld 401
Mean Pressure 0.1 hPa P
601 Precipitation Sum 0.1 mm
R 602 Maximum 1-day precipitation
0.1 mm Rx 701
Number of days with snow cover (> 50% covered) days dsc
801 Mean cloud cover %
N Element number Climatic element

References

Nordklim dataset 1.0 - description and illustrations Norwegian meteorological institute, 08/01 KLIMA, 2001

Examples

Run this code
## Not run: 
# data(NordklimData)
# str(NordklimData)
# # get all the country codes
# countries <- unique(NordklimData$CountryCode)
# # earliest and latest year of data collection
# minFirstYear<- min(NordklimData$FirstYear)
# maxFirstYear<- max(NordklimData$FirstYear)
# allyears <- min(NordklimData$FirstYear):max(NordklimData$FirstYear)
# # get the yearly average of all records
# avgNordk <- cbind(NordklimData[,c('CountryCode','ClimateElement','FirstYear',
# 'NordklimNumber')], 
# YrAvg=apply(NordklimData[,c('January','February','March','April','May','June',
# 'July','August','September', 'October','November','December')],1,function(x) 
# {x[x==-9999]<-NA;mean(x,na.rm = TRUE)}))
# str(avgNordk)
# # plot the Danish mean temperatures for its 5 stations (for a quick visual 
# # inspection, no need for labels or legends)
# DanavgNordk <- avgNordk[which(avgNordk$CountryCode=='DK' & 
# avgNordk$ClimateElement==101),c('FirstYear','YrAvg','NordklimNumber')]
# p <- unique(DanavgNordk$NordklimNumber)
# for (Dp in p) { plot(DanavgNordk[which(DanavgNordk$NordklimNumber==Dp),
# c('FirstYear','YrAvg')],type='l',col=( which(Dp==p)),
# xlim=c(min(DanavgNordk$FirstYear), max(DanavgNordk$FirstYear)),
# ylim=c(60,120)); if (Dp != p[length(p)]) par(new=T)}
# # average each country
# avgNordkCountry=aggregate(YrAvg ~ CountryCode+ClimateElement+FirstYear , 
# data = avgNordk, function(x) {x[x==-9999]<-NA;mean(x,na.rm = TRUE)})
# str(avgNordkCountry)
# # plot the temperatures (mean of all stations) for each country
# for (country in countries) { plot(avgNordkCountry[
# which(avgNordkCountry$CountryCode==country & avgNordkCountry$ClimateElement==101),
# c('FirstYear','YrAvg')],type='l',col=( which(country==countries)),
# xlim=c(minFirstYear, maxFirstYear),ylim=c(0,120),
# main='Mean of yearly means of all stations for each country',
# xlab='Years',ylab='Mean temperature'); 
# if (country != countries[length(countries)]) par(new=T)}
# legend('topleft', legend = countries, col=1:5, pch=1, lty=1, merge=TRUE)
# ## End(Not run)

Run the code above in your browser using DataLab