Learn R Programming

normtest (version 1.1)

frosini.norm.test: Frosini test for normality

Description

Performs Frosini test for the composite hypothesis of normality, see e.g. Frosini (1987).

Usage

frosini.norm.test(x, nrepl=2000)

Arguments

x
a numeric vector of data values.
nrepl
the number of replications in Monte Carlo simulation.

Value

  • A list with class "htest" containing the following components:
  • statisticthe value of the Frosini statistic.
  • p.valuethe p-value for the test.
  • methodthe character string "Frosini test for normality".
  • data.namea character string giving the name(s) of the data.

Details

The Frosini test for normality is based on the following statistic: $$B_n = \frac{1}{\sqrt{n}}\sum_{i=1}^n{\left|\Phi(Y_i) - \frac{i-0.5}{n} \right|},$$ where $$Y_i=\frac{X_{(i)}-\overline{X}}{s}, \quad s^2=\frac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^2.$$ The p-value is computed by Monte Carlo simulation.

References

Frosini, B.V. (1987): On the distribution and power of a goodness-of-fit statistic with parametric and nonparametric applications, "Goodness-of-fit". (Ed. by Revesz P., Sarkadi K., Sen P.K.) --- Amsterdam-Oxford-New York: North-Holland. --- Pp. 133--154.

Examples

Run this code
frosini.norm.test(rnorm(100))
frosini.norm.test(runif(100,-1,1))

Run the code above in your browser using DataLab