Learn R Programming

normtest (version 1.1)

kurtosis.norm.test: Kurtosis test for normality

Description

Performs kurtosis test for the composite hypothesis of normality, see, e.g., Shapiro, Wilk and Chen (1968).

Usage

kurtosis.norm.test(x, nrepl=2000)

Arguments

x
a numeric vector of data values.
nrepl
the number of replications in Monte Carlo simulation.

Value

  • A list with class "htest" containing the following components:
  • statisticthe value of the test statistic.
  • p.valuethe p-value for the test.
  • methodthe character string "Kurtosis test for normality".
  • data.namea character string giving the name(s) of the data.

Details

The kurtosis test for normality is based on the following statistic: $$b_2 = \frac{\frac{1}{n}\sum_{i=1}^n(X_i - \overline{X})^4}{\left(\frac{1}{n}\sum_{i=1}^n(X_i - \overline{X})^2\right)^2},$$ The p-value is computed by Monte Carlo simulation.

References

Shapiro, S. S., Wilk, M. B. and Chen, H. J. (1968): A comparative study of various tests for normality. --- Journal of the American Statistical Association, vol. 63, pp. 1343--1372.

Examples

Run this code
kurtosis.norm.test(rnorm(100))
kurtosis.norm.test(runif(100,-1,1))

Run the code above in your browser using DataLab