
This function is an implementation of the moment-type estimator developed by Daouia, Florens and Simar (2010).
dfs_momt(xtab, ytab, x, rho, k, ci=TRUE)
Returns a numeric vector with the same length as x
.
a numeric vector containing the observed inputs
a numeric vector of the same length as xtab
containing the observed outputs
a numeric vector of evaluation points in which the estimator is to be computed.
a numeric vector of the same length as x
or a scalar, which determines the values of rho.
a numeric vector of the same length as x
or a scalar, which determines the thresholds at which the moment estimator will be computed.
a boolean, TRUE for computing the confidence interval.
Abdelaati Daouia and Thibault Laurent (converted from Leopold Simar's Matlab code).
Combining ideas from Dekkers, Einmahl and de Haan (1989) with the dimensionless
transformation rho_momt_pick
by utilizing the option method="moment"
,
or by the Pickands estimator method="pickands"
.
Second, use the estimator kopt_momt_pick
for an automatic data-driven rule for selecting
Daouia, A., Florens, J.P. and Simar, L. (2010). Frontier Estimation and Extreme Value Theory, Bernoulli, 16, 1039-1063.
Dekkers, A.L.M., Einmahl, J.H.J. and L. de Haan (1989), A moment estimator for the index of an extreme-value distribution, nnals of Statistics, 17, 1833-1855.
dfs_pick
, kopt_momt_pick
.
data("post")
x.post <- seq(post$xinput[100], max(post$xinput),
length.out = 100)
# 1. When rho[x] is known and equal to 2, we set:
rho <- 2
# To determine the sample fraction k=k[n](x)
# in tilde(varphi[momt])(x).
best_kn.1 <- kopt_momt_pick(post$xinput, post$yprod,
x.post, rho = rho)
# To compute the frontier estimates and confidence intervals:
res.momt.1 <- dfs_momt(post$xinput, post$yprod, x.post,
rho = rho, k = best_kn.1)
# Representation
plot(yprod~xinput, data = post, xlab = "Quantity of labor",
ylab = "Volume of delivered mail")
lines(x.post, res.momt.1[,1], lty = 1, col = "cyan")
lines(x.post, res.momt.1[,2], lty = 3, col = "magenta")
lines(x.post, res.momt.1[,3], lty = 3, col = "magenta")
if (FALSE) {
# 2. rho[x] is unknown and estimated by
# the Pickands estimator tilde(rho[x])
rho_momt <- rho_momt_pick(post$xinput, post$yprod,
x.post)
best_kn.2 <- kopt_momt_pick(post$xinput, post$yprod,
x.post, rho = rho_momt)
res.momt.2 <- dfs_momt(post$xinput, post$yprod, x.post,
rho = rho_momt, k = best_kn.2)
# 3. rho[x] is unknown independent of x and estimated
# by the (trimmed) mean of tilde(rho[x])
rho_trimmean <- mean(rho_momt, trim=0.00)
best_kn.3 <- kopt_momt_pick(post$xinput, post$yprod,
x.post, rho = rho_trimmean)
res.momt.3 <- dfs_momt(post$xinput, post$yprod, x.post,
rho = rho_trimmean, k = best_kn.3)
# Representation
plot(yprod~xinput, data = post, col = "grey",
xlab = "Quantity of labor", ylab = "Volume of delivered mail")
lines(x.post, res.momt.2[,1], lty = 1, lwd = 2, col = "cyan")
lines(x.post, res.momt.2[,2], lty = 3, lwd = 4, col = "magenta")
lines(x.post, res.momt.2[,3], lty = 3, lwd = 4, col = "magenta")
plot(yprod~xinput, data = post, col = "grey",
xlab = "Quantity of labor", ylab = "Volume of delivered mail")
lines(x.post, res.momt.3[,1], lty = 1, lwd = 2, col = "cyan")
lines(x.post, res.momt.3[,2], lty = 3, lwd = 4, col = "magenta")
lines(x.post, res.momt.3[,3], lty = 3, lwd = 4, col = "magenta")
}
Run the code above in your browser using DataLab