Learn R Programming

npbr (version 1.8)

rho_momt_pick: Optimal rho for moment and Pickands frontier estimator

Description

This function gives the optimal rho involved in the moment and Pickands estimators of Daouia, Florens and Simar (2010).

Usage

rho_momt_pick(xtab, ytab, x, method="moment", lrho=1, urho=Inf)

Value

Returns a numeric vector with the same length as x.

Arguments

xtab

a numeric vector containing the observed inputs \(x_1,\ldots,x_n\).

ytab

a numeric vector of the same length as xtab containing the observed outputs \(y_1,\ldots,y_n\).

x

a numeric vector of evaluation points in which the estimator is to be computed.

method

a character equal to "moment" or "pickands".

lrho

a scalar, minimum rho threshold value.

urho

a scalar, maximum rho threshold value.

Author

Abdelaati Daouia and Thibault Laurent (codes converted from Matlab's Leopold Simar code).

Details

This function computes the moment and Pickands estimates of the extreme-value index \(\rho_x\) involved in the frontier estimators \(\tilde\varphi_{momt}(x)\) [see dfs_momt] and \(\hat\varphi_{pick}(x)\) [see dfs_pick]. In case method="moment", the estimator of \(\rho_x\) defined as $$\tilde{\rho}_x = -\left(M^{(1)}_n + 1 -\frac{1}{2}\left[1-(M^{(1)}_n)^2/M^{(2)}_n\right]^{-1}\right)^{-1}$$ is based on the moments \(M^{(j)}_n = (1/k)\sum_{i=0}^{k-1}\left(\log z^x_{(n-i)}- \log z^x_{(n-k)}\right)^j\) for \(j=1,2\), with \(z^{x}_{(1)}\leq \cdots\leq z^{x}_{(n)}\) are the ascending order statistics corresponding to the transformed sample \(\{z^{x}_i := y_i\mathbf{1}_{\{x_i\le x\}}, \,i=1,\cdots,n\}\) In case method="pickands", the estimator of \(\rho_x\) is given by $$\hat{\rho}_x = - \log 2/\log\{(z^x_{(n-k+1)} - z^x_{(n-2k+1)})/(z^x_{(n-2k+1)} - z^x_{(n-4k+1)})\}.$$ To select the threshold \(k=k_n(x)\) in \(\tilde{\rho}_x\) and \(\hat{\rho}_x\), Daouia et al. (2010) have suggested to use the following data driven method for each \(x\): They first select a grid of values for \(k=k_n(x)\). For the Pickands estimator \(\hat{\rho}_x\), they choose \(k_n(x) = [N_x /4] - k + 1\), where \(k\) is an integer varying between 1 and the integer part \([N_x/4]\) of \(N_x/4\), with \(N_x=\sum_{i=1}^n1_{\{x_i\le x\}}\). For the moment estimator \(\tilde{\rho}_x\), they choose \(k_n(x) = N_x - k\), where \(k\) is an integer varying between 1 and \(N_x -1\). Then, they evaluate the estimator \(\hat{\rho}_x(k)\) (respectively, \(\tilde{\rho}_x(k)\)) and select the k where the variation of the results is the smallest. They achieve this by computing the standard deviation of \(\hat{\rho}_x(k)\) (respectively, \(\tilde{\rho}_x(k)\)) over a ``window'' of \(\max([\sqrt{N_x /4}],3)\) (respectively, \(\max([\sqrt{N_x-1}],3)\)) successive values of \(k\). The value of \(k\) where this standard deviation is minimal defines the value of \(k_n(x)\). The user can also appreciably improve the estimation of \(\rho_x\) and \(\varphi(x)\) itself by tuning the choice of the lower limit (default option lrho=1) and upper limit (default option urho=Inf).

References

Daouia, A., Florens, J.P. and Simar, L. (2010). Frontier Estimation and Extreme Value Theory, Bernoulli, 16, 1039-1063.

Dekkers, A.L.M., Einmahl, J.H.J. and L. de Haan (1989), A moment estimator for the index of an extreme-value distribution, The Annals of Statistics, 17(4), 1833-1855.

See Also

dfs_momt, dfs_pick

Examples

Run this code
data("post")
x.post<- seq(post$xinput[100],max(post$xinput), 
 length.out=100) 
if (FALSE) {
# a. Optimal rho for Pickands frontier estimator
rho_pick<-rho_momt_pick(post$xinput, post$yprod, 
 x.post, method="pickands")
# b. Optimal rho for moment frontier estimator
rho_momt<-rho_momt_pick(post$xinput, post$yprod, 
 x.post, method="moment")
}

Run the code above in your browser using DataLab