Learn R Programming

npsp: Nonparametric spatial (geo)statistics

Version 0.7.13

This package implements nonparametric methods for inference on multidimensional spatial (or spatio-temporal) processes, which may be (especially) useful in (automatic) geostatistical modeling and interpolation.

Main functions

Nonparametric methods for inference on both spatial trend and variogram functions:

  • np.fitgeo() (automatically) fits an isotropic nonparametric geostatistical model by estimating the trend and the variogram (using a bias-corrected estimator) iteratively (by calling h.cv(), locpol(), np.svariso.corr() and fitsvar.sb.iso() at each iteration).

  • locpol(), np.den() and np.svar() use local polynomial kernel smoothing to compute nonparametric estimates of a multidimensional regression function (e.g. a spatial trend), a probability density function or a semivariogram (or their first derivatives), respectively. Estimates of these functions can be constructed for any dimension (depending on the amount of available memory).

  • np.svariso.corr() computes a bias-corrected nonparametric semivariogram estimate using an iterative algorithm similar to that described in Fernandez-Casal and Francisco-Fernandez (2014). This procedure tries to correct the bias due to the direct use of residuals (obtained, in this case, from a nonparametric estimation of the trend function) in semivariogram estimation.

  • fitsvar.sb.iso() fits a ‘nonparametric’ isotropic Shapiro-Botha variogram model by WLS. Currently, only isotropic semivariogram estimation is supported.

Nonparametric residual kriging (sometimes called external drift kriging):

  • np.kriging() computes residual kriging predictions
    (and the corresponding simple kriging standard errors).

  • kriging.simple() computes simple kriging predictions and standard errors.

  • Currently, only global (residual) simple kriging is implemented.
    Users are encouraged to use gstat::krige() (or gstat::krige.cv()) together with as.vgm() for local kriging.

Other functions

Among the other functions intended for direct access by the user, the following (methods for multidimensional linear binning, local polynomial kernel regression, density or variogram estimation) could be emphasized: binning(), bin.den(), svar.bin(), h.cv() and interp(). There are functions for plotting data joint with a legend representing a continuous color scale (based on fields::image.plot()):

  • splot() allows to combine a standard R plot with a legend.

  • spoints(), simage() and spersp() draw the corresponding high-level plot with a legend strip for the color scale.

There are also some functions which can be used to interact with other packages. For instance, as.variogram() (geoR) or as.vgm() (gstat).

See the Reference for the complete list of functions.

Installation

npsp is available from CRAN, but you can install the development version from github with:

# install.packages("devtools")
devtools::install_github("rubenfcasal/npsp")

Note also that, as this package requires compilation, Windows users need to have previously installed the appropriate version of Rtools, and OS X users need to have installed Xcode.

Alternatively, Windows users may install the corresponding npsp_X.Y.Z.zip file in the releases section of the github repository.

For R versions 4.2.x under Windows:

install.packages('https://github.com/rubenfcasal/npsp/releases/download/v0.7-10/npsp_0.7-10.zip',
                 repos = NULL)

Author

Ruben Fernandez-Casal (Dep. Mathematics, University of A Coruña, Spain). Please send comments, error reports or suggestions to rubenfcasal@gmail.com.

Acknowledgments

Important suggestions and contributions to some techniques included here were made by Sergio Castillo-Páez (Universidad de las Fuerzas Armadas ESPE, Ecuador) and Tomas Cotos-Yañez (Dep. Statistics, University of Vigo, Spain).

This research has been supported by MINECO grant MTM2017-82724-R, and by the Xunta de Galicia (Grupos de Referencia Competitiva ED431C-2020-14 and Centro de Investigación del Sistema universitario de Galicia ED431G 2019/01), all of them through the ERDF.

References

Copy Link

Version

Install

install.packages('npsp')

Monthly Downloads

204

Version

0.7-13

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Ruben FernandezCasal

Last Published

February 19th, 2024

Functions in npsp (0.7-13)

coordvalues

Coordinate values
earthquakes

Earthquake data
disc.sb

Discretization nodes of a Shapiro-Botha variogram model
covar

Covariance values
np.kriging

Nonparametric (residual) kriging
np.svar

Local polynomial estimation of the semivariogram
binning

Linear binning
coords

(spatial) coordinates
np.den

Local polynomial density estimation
mask

Mask methods
.cpu.time.ini

npsp internal and secondary functions
rule

npsp Rules
npsp-package

npsp: Nonparametric spatial (geo)statistics
splot

Utilities for plotting with a color scale
cpu.time

Total and partial CPU time used
data.grid

Gridded data (S3 class "data.grid")
spoints

Scatter plot with a color scale
h.cv

Cross-validation methods for bandwidth selection
fitsvar.sb.iso

Fit an isotropic Shapiro-Botha variogram model
interp

Fast linear interpolation of a regular grid
grid.par

Grid parameters (S3 class "grid.par")
npsp.tolerance

npsp Tolerances
np.fitgeo

Fit a nonparametric geostatistical model
plot.fitgeo

Plot a nonparametric geostatistical model
sv

Evaluate a semivariogram model
svar.bin

Linear binning of semivariances
np.geo

Nonparametric geostatistical model (S3 class "np.geo")
aquifer

Wolfcamp aquifer data
svar.grid

Discretize a (semi)variogram model
svar.plot

Plot a semivariogram object
svarmod

Define a (semi)variogram model
scattersplot

Exploratory scatter plots
as.data.grid

data.grid-class methods
varcov

Covariance matrix
kappasb

Coefficients of an extended Shapiro-Botha variogram model
simage

Image plot with a color scale
locpol

Local polynomial estimation
spersp

Perspective plot with a color scale
npsp-geoR

Interface to package "geoR"
npsp-gstat

Interface to package "gstat"
precipitation

Precipitation data
rgraphics

R Graphics for gridded data
bin.den

Linear binning for density estimation
as.sp

Convert npsp object to sp object