Drawing a pseudo (simplified) radial plot.
psRadialPlot(EDdata, addsigma = 0, dose = NULL,
zmin = NULL, zmax = NULL, ntick = 6,
digits = 2, pcolor = "blue", psize = 1,
rg = 2, zlabel = "De (Gy)")
Return a pseudo radial plot
matrix(required): a two-column matrix (i.e., equivalent dose values and
associated standard errors)
numeric(with default): additional uncertainty
vector(optional): dose population(s) to be drawn
numeric(with default): lower limit on z-axis
numeric(with default): upper limit on z-axis
integer(with default): desired number of ticks in z-axis
integer(with default): number of decimal places or significant digits for values shown in z-axis
character(with default): color of a data point, input colors() to see more available colors
numeric(with default): size of a data point
integer(with default): range of a dose population, 0=dose
,
1=dose+/-sigma
, 2=dose+/-2sigma
character(with default): title for the z-axis
Function psRadialPlot is used for drawing a simplified radial plot in which the z-axis is a straight line. The pseudo radial plot is easier to construct compared to the regular radial plot. This function can be adopted to display estimates that have different error estimates in any field of the analytical sciences. Note that the function handles datasets in log-scale, so any minus observation is not allowed.
Galbraith RF, 1988. Graphical display of estimates having differing standard errors. Technometrics, 30(3): 271-281.
Galbraith RF, 1994. Some applications of radial plots. Journal of the American Statistical Association, 89(428): 1232-1242.
Galbraith RF, 2010. On plotting OSL equivalent doses. Ancient TL, 28(1): 1-10.
Galbraith RF, Roberts RG, Laslett GM, Yoshida H, Olley JM, 1999. Optical dating of single grains of quartz from Jinmium rock shelter, northern Australia. Part I: experimental design and statistical models. Archaeometry, 41(2): 339-364.
dbED; RadialPlotter; EDdata
data(EDdata)
psRadialPlot(EDdata$al3, addsigma=0.10,
dose=c(39.14, 51.27, 79.14), digits=1,
zmin=30, zmax=100, ntick=10, rg=1)
Run the code above in your browser using DataLab