modpower(2, 100, 7) #=> 2
modpower(3, 100, 7) #=> 4
modorder(7, 17) #=> 16, i.e. 7 is a primitive root mod 17
## Gauss' table of primitive roots modulo prime numbers < 100
proots <- c(2, 2, 3, 2, 2, 6, 5, 10, 10, 10, 2, 2, 10, 17, 5, 5,
6, 28, 10, 10, 26, 10, 10, 5, 12, 62, 5, 29, 11, 50, 30, 10)
P <- Primes(100)
for (i in seq(along=P)) {
cat(P[i], "\t", modorder(proots[i], P[i]), proots[i], "\t", "\n")
}
if (FALSE) {
## Lehmann's primality test
lehmann_test <- function(n, ntry = 25) {
if (!is.numeric(n) || ceiling(n) != floor(n) || n < 0)
stop("Argument 'n' must be a natural number")
if (n >= 9e7)
stop("Argument 'n' should be smaller than 9e7.")
if (n < 2) return(FALSE)
else if (n == 2) return(TRUE)
else if (n > 2 && n %% 2 == 0) return(FALSE)
k <- floor(ntry)
if (k < 1) k <- 1
if (k > n-2) a <- 2:(n-1)
else a <- sample(2:(n-1), k, replace = FALSE)
for (i in 1:length(a)) {
m <- modpower(a[i], (n-1)/2, n)
if (m != 1 && m != n-1) return(FALSE)
}
return(TRUE)
}
## Examples
for (i in seq(1001, 1011, by = 2))
if (lehmann_test(i)) cat(i, "\n")
# 1009
system.time(lehmann_test(27644437, 50)) # TRUE
# user system elapsed
# 0.086 0.151 0.235
}
Run the code above in your browser using DataLab