tools:::Rd_package_description("numbers")
tools:::Rd_package_author("numbers")
Maintainer: tools:::Rd_package_maintainer("numbers")
The DESCRIPTION file: tools:::Rd_package_DESCRIPTION("numbers") tools:::Rd_package_indices("numbers")
Although R does not have a true integer data type, integers can be represented exactly up to 2^53-1 . The numbers package attempts to provided basic number-theoretic functions that will work correcty and relatively fast up to this level.
Hardy, G. H., and E. M. Wright (1980). An Introduction to the Theory of Numbers. 5th Edition, Oxford University Press.
Riesel, H. (1994). Prime Numbers and Computer Methods for Factorization. Second Edition, Birkhaeuser Boston.
Crandall, R., and C. Pomerance (2005). Prime Numbers: A Computational Perspective. Springer Science+Business.
Shoup, V. (2009). A Computational Introduction to Number Theory and Algebra. Second Edition, Cambridge University Press.
Arndt, J. (2010). Matters Computational: Ideas, Algorithms, Source Code. 2011 Edition, Springer-Verlag, Berlin Heidelberg.
Forster, O. (2014). Algorithmische Zahlentheorie. 2. Auflage, Springer Spektrum Wiesbaden.