# NOT RUN {
library(oce)
# 1. contouring example, with wind-speed data from Koch et al. (1983)
data(wind)
u <- interpBarnes(wind$x, wind$y, wind$z)
contour(u$xg, u$yg, u$zg, labcex=1)
text(wind$x, wind$y, wind$z, cex=0.7, col="blue")
title("Numbers are the data")
# 2. As 1, but blank out spots where data are sparse
u <- interpBarnes(wind$x, wind$y, wind$z, trim=0.1)
contour(u$xg, u$yg, u$zg, level=seq(0, 30, 1))
points(wind$x, wind$y, cex=1.5, pch=20, col="blue")
# 3. As 1, but interpolate back to points, and display the percent mismatch
u <- interpBarnes(wind$x, wind$y, wind$z)
contour(u$xg, u$yg, u$zg, labcex=1)
mismatch <- 100 * (wind$z - u$zd) / wind$z
text(wind$x, wind$y, round(mismatch), col="blue")
title("Numbers are percent mismatch between grid and data")
# 4. As 3, but contour the mismatch
mismatchGrid <- interpBarnes(wind$x, wind$y, mismatch)
contour(mismatchGrid$xg, mismatchGrid$yg, mismatchGrid$zg, labcex=1)
# 5. One-dimensional example, smoothing a salinity profile
data(ctd)
p <- ctd[["pressure"]]
y <- rep(1, length(p)) # fake y data, with arbitrary value
S <- ctd[["salinity"]]
pg <- pretty(p, n=100)
g <- interpBarnes(p, y, S, xg=pg, xr=1)
plot(S, p, cex=0.5, col="blue", ylim=rev(range(p)))
lines(g$zg, g$xg, col="red")
# }
Run the code above in your browser using DataLab