Select the subset of predictors that do the best at meeting some
well-defined objective criterion, such as having the largest R2 value or the
smallest MSE, Mallow's Cp or AIC.
Usage
ols_step_best_subset(model, ...)
# S3 method for ols_step_best_subset
plot(x, model = NA, print_plot = TRUE,
...)
Value
ols_step_best_subset returns an object of class "ols_step_best_subset".
An object of class "ols_step_best_subset" is a data frame containing the
following components:
n
model number
predictors
predictors in the model
rsquare
rsquare of the model
adjr
adjusted rsquare of the model
predrsq
predicted rsquare of the model
cp
mallow's Cp
aic
akaike information criteria
sbic
sawa bayesian information criteria
sbc
schwarz bayes information criteria
gmsep
estimated MSE of prediction, assuming multivariate normality
jp
final prediction error
pc
amemiya prediction criteria
sp
hocking's Sp
Arguments
model
An object of class lm.
...
Other inputs.
x
An object of class ols_step_best_subset.
print_plot
logical; if TRUE, prints the plot else returns a plot object.
Deprecated Function
ols_best_subset() has been deprecated. Instead use ols_step_best_subset().
References
Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition).
Chicago, IL., McGraw Hill/Irwin.
See Also
Other variable selection procedures: ols_step_all_possible,
ols_step_backward_aic,
ols_step_backward_p,
ols_step_both_aic,
ols_step_forward_aic,
ols_step_forward_p