Learn R Programming

olsrr (version 0.5.3)

ols_step_best_subset: Best subsets regression

Description

Select the subset of predictors that do the best at meeting some well-defined objective criterion, such as having the largest R2 value or the smallest MSE, Mallow's Cp or AIC.

Usage

ols_step_best_subset(model, ...)

# S3 method for ols_step_best_subset plot(x, model = NA, print_plot = TRUE, ...)

Value

ols_step_best_subset returns an object of class "ols_step_best_subset". An object of class "ols_step_best_subset" is a data frame containing the following components:

n

model number

predictors

predictors in the model

rsquare

rsquare of the model

adjr

adjusted rsquare of the model

predrsq

predicted rsquare of the model

cp

mallow's Cp

aic

akaike information criteria

sbic

sawa bayesian information criteria

sbc

schwarz bayes information criteria

gmsep

estimated MSE of prediction, assuming multivariate normality

jp

final prediction error

pc

amemiya prediction criteria

sp

hocking's Sp

Arguments

model

An object of class lm.

...

Other inputs.

x

An object of class ols_step_best_subset.

print_plot

logical; if TRUE, prints the plot else returns a plot object.

Deprecated Function

ols_best_subset() has been deprecated. Instead use ols_step_best_subset().

References

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

See Also

Other variable selection procedures: ols_step_all_possible, ols_step_backward_aic, ols_step_backward_p, ols_step_both_aic, ols_step_forward_aic, ols_step_forward_p

Examples

Run this code
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_step_best_subset(model)

# plot
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
k <- ols_step_best_subset(model)
plot(k)

Run the code above in your browser using DataLab