Learn R Programming

onemap (version 3.0.0)

onemap_example_bc: Simulated data from a backcross population

Description

Simulated data set from a backcross population.

Usage

data(onemap_example_bc)

Arguments

Format

The format is: List of 10 $ geno : num [1:150, 1:67] 1 2 1 1 2 1 2 1 1 2 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:150] "ID1" "ID2" "ID3" "ID4" ... .. ..$ : chr [1:67] "M1" "M2" "M3" "M4" ... $ n.ind : int 150 $ n.mar : int 67 $ segr.type : chr [1:67] "A.H" "A.H" "A.H" "A.H" ... $ segr.type.num: logi [1:67] NA NA NA NA NA NA ... $ n.phe : int 1 $ pheno : num [1:150, 1] 40.8 39.5 37.9 34.2 38.9 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : NULL .. ..$ : chr "Trait_1" $ CHROM : NULL $ POS : NULL $ input : chr "onemap_example_bc.raw" - attr(*, "class")= chr [1:2] "onemap" "backcross"

Author

Marcelo Mollinari, mmollina@usp.br

Details

A total of 150 individuals were genotyped for 67 markers with 15% of missing data. There is one quantitative phenotype to show how to use onemap output as R\qtl input.

See Also

read_onemap and read_mapmaker.

Examples

Run this code
data(onemap_example_bc)

# perform two-point analyses
twopts <- rf_2pts(onemap_example_bc)
twopts

Run the code above in your browser using DataLab