# NOT RUN {
#===> boxPlot <===#
data(run10)
par(mfrow=1:2)
boxPlot(run10$time)
boxplot(run10$time)
#===> histPlot, example 1 <===#
data(run10)
par(mfrow=c(2,2))
histPlot(run10$time)
histPlot(run10$time[run10$gender=='M'], probability=TRUE, xlim=c(30, 180),
ylim=c(0, 0.025), hollow=TRUE)
histPlot(run10$time[run10$gender=='F'], probability=TRUE, add=TRUE,
hollow=TRUE, lty=3, border='red')
legend('topleft', col=c('black', 'red'), lty=2:3, legend=c('M','F'))
histPlot(run10$time, col=fadeColor('yellow', '33'), border='darkblue',
probability=TRUE, breaks=30, lwd=3)
brks <- c(40, 50, 60, 65, 70, 75, 80, seq(82.5, 120, 2.5), 125,
130, 135, 140, 150, 160, 180)
histPlot(run10$time, probability=TRUE, breaks=brks,
col=fadeColor('darkgoldenrod4', '33'))
#===> histPlot, example 2 <===#
data(cars)
par(mfrow=c(1,1))
histPlot(cars$price[cars$type=='small'], probability=TRUE, hollow=TRUE,
xlim=c(0,50))
histPlot(cars$price[cars$type=='midsize'], probability=TRUE, hollow=TRUE,
add=TRUE, border='red', lty=3)
histPlot(cars$price[cars$type=='large'], probability=TRUE, hollow=TRUE,
add=TRUE, border='blue', lty=4)
legend('topright', lty=2:4, col=c('black', 'red', 'blue'),
legend=c('small', 'midsize', 'large'))
#===> densityPlot <===#
data(tips)
par(mfrow=c(1,1))
densityPlot(tips$tip, tips$day)
legend('topright', col=c('black','red'), lty=1:2,
legend=c('Tuesday', 'Friday'))
#===> identifying reasons for outliers <===#
data(marioKart)
par(mfrow=c(1,1))
boxPlot(marioKart$totalPr, marioKart$cond, horiz=TRUE)
these <- which(marioKart$totalPr > 80)
# see the data collection criteria for
# why these observations do not belong.
lines(rep(marioKart$totalPr[these[1]], 2), c(2.4, 2))
text(marioKart$totalPr[these[1]], 2.4, marioKart$title[these[1]],
pos=3, cex=0.5)
lines(rep(marioKart$totalPr[these[2]], 2), c(1.6, 2))
text(marioKart$totalPr[these[2]], 1.6, marioKart$title[these[2]],
pos=1, cex=0.5)
#===> compare plotting methods <===#
data(cars)
par(mfrow=c(1,1))
histPlot(cars$price, ylim=c(0, 0.1), axes=FALSE, ylab='',
probability=TRUE, xlab='price')
axis(1)
boxPlot(cars$price, width=0.03, horiz=TRUE, add=0.067, axes=FALSE)
dotPlot(cars$price, at=0.095, add=TRUE)
densityPlot(cars$price, add=TRUE)
#===> controlling the number of axis labels <===#
# specify the number of labels
data(textbooks)
x <- textbooks$diff
par(mfrow=c(3,1))
histPlot(x, axes=FALSE)
buildAxis(1, x, n=4, nMin=4, nMax=4)
histPlot(x, axes=FALSE)
buildAxis(1, x, n=5, nMin=5, nMax=5)
histPlot(x, axes=FALSE)
# no decent axis is found for this data with exactly six labels
# no min or max specified, only a target number of labels:
buildAxis(1, x, n=6)
#===> creating normal plots with tails <===#
par(mfrow=c(2,3), mar=c(3,3,1,1), mgp=c(1.7, 0.7, 0))
normTail(L=-2)
normTail(U=1, xLab='symbol', cex.axis=0.7)
normTail(M=c(-2,-0.3), col='#22558833')
normTail(5, 13, L=-5, M=c(0,3), U=12, xAxisIncr=2)
normTail(102, 4, xlim=c(97,110), M=c(100,103))
normTail(-10.0, 5.192, M=c(-5,2), digits=1, xAxisIncr=2)
#===> Exploratory Data Analysis Plot <===#
data(mlbBat10)
#edaPlot(mlbBat10)
# }
Run the code above in your browser using DataLab