# NOT RUN {
# genrose function code
genrose.f<- function(x, gs=NULL){ # objective function
## One generalization of the Rosenbrock banana valley function (n parameters)
n <- length(x)
if(is.null(gs)) { gs=100.0 }
fval<-1.0 + sum (gs*(x[1:(n-1)]^2 - x[2:n])^2 + (x[2:n] - 1)^2)
return(fval)
}
genrose.g <- function(x, gs=NULL){
# vectorized gradient for genrose.f
# Ravi Varadhan 2009-04-03
n <- length(x)
if(is.null(gs)) { gs=100.0 }
gg <- as.vector(rep(0, n))
tn <- 2:n
tn1 <- tn - 1
z1 <- x[tn] - x[tn1]^2
z2 <- 1 - x[tn]
gg[tn] <- 2 * (gs * z1 - z2)
gg[tn1] <- gg[tn1] - 4 * gs * x[tn1] * z1
return(gg)
}
genrose.h <- function(x, gs=NULL) { ## compute Hessian
if(is.null(gs)) { gs=100.0 }
n <- length(x)
hh<-matrix(rep(0, n*n),n,n)
for (i in 2:n) {
z1<-x[i]-x[i-1]*x[i-1]
# z2<-1.0-x[i]
hh[i,i]<-hh[i,i]+2.0*(gs+1.0)
hh[i-1,i-1]<-hh[i-1,i-1]-4.0*gs*z1-4.0*gs*x[i-1]*(-2.0*x[i-1])
hh[i,i-1]<-hh[i,i-1]-4.0*gs*x[i-1]
hh[i-1,i]<-hh[i-1,i]-4.0*gs*x[i-1]
}
return(hh)
}
trad<-c(-1.2,1)
ans100fgh<- gHgen(trad, genrose.f, gr=genrose.g, hess=genrose.h,
control=list(ktrace=1))
print(ans100fgh)
ans100fg<- gHgen(trad, genrose.f, gr=genrose.g,
control=list(ktrace=1))
print(ans100fg)
ans100f<- gHgen(trad, genrose.f, control=list(ktrace=1))
print(ans100f)
ans10fgh<- gHgen(trad, genrose.f, gr=genrose.g, hess=genrose.h,
control=list(ktrace=1), gs=10)
print(ans10fgh)
ans10fg<- gHgen(trad, genrose.f, gr=genrose.g,
control=list(ktrace=1), gs=10)
print(ans10fg)
ans10f<- gHgen(trad, genrose.f, control=list(ktrace=1), gs=10)
print(ans10f)
# }
Run the code above in your browser using DataLab