penoptpersp(x, y, z, a0 = NULL, b0 = NULL, eps = NULL, reltol = NULL, relerr = NULL, rho0 = NULL, maxin = NULL, maxout = NULL)
Instead we minimize $ \sum_i \frac{(y_i - x_i^T \beta)^2}{z_i^T\alpha} + \rho \times \mathrm{pen}$ for a decreasing sequence of $\rho$
where $ \mathrm{pen} = -( \sum_{j = 1}^J( \log(\alpha_j-\epsilon_j) ) + \log(1-\sum_{j = 1}^J \alpha_j) )$
starting values are $\alpha = a0$ and $\beta = b0$. They can be missing.
The optimization stops when within (1+relerr) of minimum variance.