options(contrasts = c("contr.treatment", "contr.poly"))
data(soup)
## More manageable data set for less voluminous printing:
(tab26 <- with(soup, table("Product" = PROD, "Response" = SURENESS)))
dimnames(tab26)[[2]] <- c("Sure", "Not Sure", "Guess", "Guess", "Not Sure", "Sure")
dat26 <- expand.grid(sureness = as.factor(1:6), prod = c("Ref", "Test"))
dat26$wghts <- c(t(tab26))
dat26
m1 <- clm(sureness ~ prod, scale = ~prod, data = dat26,
weights = wghts, link = "logistic")
predict(m1)
mN1 <- clm(sureness ~ 1, nominal = ~prod, data = dat26,
weights = wghts)
predict(mN1)
predict(update(m1, scale = ~.-prod))
## Fit model from polr example:
data(housing, package = "MASS")
fm1 <- clm(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
predict(fm1)
Run the code above in your browser using DataLab