# NOT RUN {
options(contrasts = c("contr.treatment", "contr.poly"))
## More manageable data set:
(tab26 <- with(soup, table("Product" = PROD, "Response" = SURENESS)))
dimnames(tab26)[[2]] <- c("Sure", "Not Sure", "Guess", "Guess", "Not Sure", "Sure")
dat26 <- expand.grid(sureness = as.factor(1:6), prod = c("Ref", "Test"))
dat26$wghts <- c(t(tab26))
m1 <- clm2(sureness ~ prod, scale = ~prod, data = dat26,
weights = wghts, link = "logistic")
## profile
pr1 <- profile(m1)
par(mfrow = c(2, 2))
plot(pr1)
m9 <- update(m1, link = "log-gamma")
pr9 <- profile(m9, whichL = numeric(0), whichS = numeric(0))
par(mfrow = c(1, 1))
plot(pr9)
plot(pr9, Log=TRUE, relative = TRUE)
plot(pr9, Log=TRUE, relative = TRUE, ylim = c(-4, 0))
plot(pr9, Log=TRUE, relative = FALSE)
## confint
confint(pr9)
confint(pr1)
## Extend example from polr in package MASS:
## Fit model from polr example:
if(require(MASS)) {
fm1 <- clm2(Sat ~ Infl + Type + Cont, scale = ~ Cont, weights = Freq,
data = housing)
pr1 <- profile(fm1)
confint(pr1)
par(mfrow=c(2,2))
plot(pr1)
}
# }
Run the code above in your browser using DataLab