Learn R Programming

ordinal (version 2019.4-25)

predict.clm2: Predict Method for CLM fits

Description

Obtains predictions from a cumulative link (mixed) model.

Usage

# S3 method for clm2
predict(object, newdata, ...)

Arguments

object

a fitted object of class inheriting from clm2 including clmm2 objects.

newdata

optionally, a data frame in which to look for variables with which to predict. Observe that the response variable should also be present.

further arguments passed to or from other methods.

Value

A vector of predicted probabilities.

Details

This method does not duplicate the behavior of predict.polr in package MASS which produces a matrix instead of a vector of predictions. The behavior of predict.polr can be mimiced as shown in the examples.

If newdata is not supplied, the fitted values are obtained. For clmm2 fits this means predictions that are controlled for the observed value of the random effects. If the predictions for a random effect of zero, i.e. an average 'subject', are wanted, the same data used to fit the model should be supplied in the newdata argument. For clm2 fits those two sets of predictions are identical.

See Also

clm2, clmm2.

Examples

Run this code
# NOT RUN {
options(contrasts = c("contr.treatment", "contr.poly"))

## More manageable data set for less voluminous printing:
(tab26 <- with(soup, table("Product" = PROD, "Response" = SURENESS)))
dimnames(tab26)[[2]] <- c("Sure", "Not Sure", "Guess", "Guess", "Not Sure", "Sure")
dat26 <- expand.grid(sureness = as.factor(1:6), prod = c("Ref", "Test"))
dat26$wghts <- c(t(tab26))
dat26

m1 <- clm2(sureness ~ prod, scale = ~prod, data = dat26,
          weights = wghts, link = "logistic")
predict(m1)

mN1 <-  clm2(sureness ~ 1, nominal = ~prod, data = dat26,
            weights = wghts)
predict(mN1)

predict(update(m1, scale = ~.-prod))


#################################
## Mimicing the behavior of predict.polr:
if(require(MASS)) {
    ## Fit model from polr example:
    fm1 <- clm2(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
    predict(fm1)

    set.seed(123)
    nlev <- 3
    y <- gl(nlev, 5)
    x <- as.numeric(y) + rnorm(15)
    fm.clm <- clm2(y ~ x)
    fm.polr <- polr(y ~ x)

    ## The equivalent of predict.polr(object, type = "probs"):
    (pmat.polr <- predict(fm.polr, type = "probs"))
    ndat <- expand.grid(y = gl(nlev,1), x = x)
    (pmat.clm <- matrix(predict(fm.clm, newdata = ndat), ncol=nlev,
                        byrow = TRUE))
    all.equal(c(pmat.clm), c(pmat.polr), tol = 1e-5) # TRUE

    ## The equivalent of predict.polr(object, type = "class"):
    (class.polr <- predict(fm.polr))
    (class.clm <- factor(apply(pmat.clm, 1, which.max)))
    all.equal(class.clm, class.polr) ## TRUE
}

# }

Run the code above in your browser using DataLab