# Reaven & Miller overt & chemical diabetes test data and group classification
head(heplots::Diabetes)
# default (standardized) linear discriminant analysis of groups on tests
diabetes_lda <- MASS::lda(group ~ ., heplots::Diabetes)
# bestow 'tbl_ord' class & augment observation, centroid, and variable fields
as_tbl_ord(diabetes_lda) %>%
augment_ord() %>%
mutate_rows(discriminant = ifelse(
.element == "active",
"centroid", "case"
)) %>%
print() -> diabetes_lda
# row-standard biplot
diabetes_lda %>%
confer_inertia(1) %>%
ggbiplot() +
theme_bw() + theme_biplot() +
geom_rows_point(aes(shape = grouping, size = discriminant), alpha = .5) +
geom_cols_axis(aes(label = name), color = "#888888", num = 8L,
text_size = 2.5, label_dodge = .02) +
ggtitle(
"LDA of Reaven & Miller diabetes groups",
"Row-standard biplot of standardized LDA"
)
# contribution LDA of groups on tests
diabetes_lda <-
lda_ord(group ~ ., heplots::Diabetes, axes.scale = "contribution")
# bestow 'tbl_ord' class & augment observation, centroid, and variable fields
as_tbl_ord(diabetes_lda) %>%
augment_ord() %>%
mutate_rows(discriminant = ifelse(
.element == "active",
"centroid", "case"
)) %>%
print() -> diabetes_lda
# symmetric biplot
diabetes_lda %>%
confer_inertia(.5) %>%
ggbiplot() +
theme_bw() + theme_biplot() +
geom_rows_point(aes(shape = grouping, alpha = discriminant)) +
geom_cols_axis(color = "#888888", num = 8L,
text_size = 2.5, text_dodge = .025) +
ggtitle(
"LDA of Reaven & Miller diabetes groups",
"Symmetric biplot of contribution LDA"
)
Run the code above in your browser using DataLab