Learn R Programming

orthopolynom (version 1.0-6.1)

gegenbauer.weight: Weight function for the Gegenbauer polynomial

Description

This function returns the value of the weight function for the order \(k\) Gegenbauer polynomial, \(C_k^{\left( \alpha \right)} \left( x \right)\).

Usage

gegenbauer.weight(x,alpha)

Value

The value of the weight function

Arguments

x

the function argument which can be a vector

alpha

polynomial parameter

Author

Frederick Novomestky fnovomes@poly.edu

Details

The function takes on non-zero values in the interval \( \left( -1,1 \right) \). The formula used to compute the weight function is as follows.

\(w\left( x \right) = \left( {1 - x^2 } \right)^{\alpha - 0.5} \)

References

Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.

Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.

Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.

Examples

Run this code
###
### compute the Gegenbauer weight function for argument values between -1 and 1
###
x <- seq( -1, 1, .01 )
y <- gegenbauer.weight( x, 1 )
plot( x, y )

Run the code above in your browser using DataLab