Learn R Programming

orthopolynom (version 1.0-6.1)

legendre.polynomials: Create list of Legendre polynomials

Description

This function returns a list with \(n + 1\) elements containing the order \(k\) Legendre polynomials, \(P_k \left( x \right)\), for orders \(k = 0,\;1,\; \ldots ,\;n\).

Usage

legendre.polynomials(n, normalized=FALSE)

Value

A list of \(n + 1\) polynomial objects

1

order 0 Legendre polynomial

2

order 1 Legendre polynomial

...

n+1

order \(n\) Legendre polynomial

Arguments

n

integer value for the highest polynomial order

normalized

a boolean value which, if TRUE, returns a list of normalized orthogonal polynomials

Author

Frederick Novomestky fnovomes@poly.edu

Details

The function legendre.recurrences produces a data frame with the recurrence relation parameters for the polynomials. If the normalized argument is FALSE, the function orthogonal.polynomials is used to construct the list of orthogonal polynomial objects. Otherwise, the function orthonormal.polynomials is used to construct the list of orthonormal polynomial objects.

References

Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.

Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.

Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.

See Also

legendre.recurrences, orthogonal.polynomials, orthonormal.polynomials

Examples

Run this code
###
### gemerate a list of normalized Laguerre polynomials of orders 0 to 10
###
normalized.p.list <- legendre.polynomials( 10, normalized=TRUE )
print( normalized.p.list )
###
### gemerate a list of unnormalized Laguerre polynomials of orders 0 to 10
###
unnormalized.p.list <- legendre.polynomials( 10, normalized=FALSE )
print( unnormalized.p.list )

Run the code above in your browser using DataLab