Learn R Programming

orthopolynom (version 1.0-6.1)

schebyshev.t.recurrences: Recurrence relations for shifted Chebyshev polynomials

Description

This function returns a data frame with \(n + 1\) rows and four named columns containing the coefficient vectors c, d, e and f of the recurrence relations for the order \(k\) shifted Chebyshev polynomial of the first kind, \(T_k^* \left( x \right)\), and for orders \(k = 0,\;1,\; \ldots ,\;n\).

Usage

schebyshev.t.recurrences(n, normalized)

Value

A data frame with the recurrence relation parameters.

Arguments

n

integer value for the highest polynomial order

normalized

boolean value which, if TRUE, returns recurrence relations for normalized polynomials

Author

Frederick Novomestky fnovomes@poly.edu

References

Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.

Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.

Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.

See Also

schebyshev.t.inner.products

Examples

Run this code
###
### generate the recurrence relations for 
### the normalized shifted T Chebyshev polynomials
### of orders 0 to 10
###
normalized.r <- schebyshev.t.recurrences( 10, normalized=TRUE )
print( normalized.r )
###
### generate the recurrence relations for 
### the unnormalized shifted T Chebyshev polynomials
### of orders 0 to 10
###
unnormalized.r <- schebyshev.t.recurrences( 10, normalized=FALSE )
print( unnormalized.r )

Run the code above in your browser using DataLab