Learn R Programming

orthopolynom (version 1.0-6.1)

ultraspherical.inner.products: Inner products of ultraspherical polynomials

Description

This function returns a vector with \(n + 1\) elements containing the inner product of an order \(k\) ultraspherical polynomial, \(C_k^{\left( \alpha \right)} \left( x \right)\), with itself (i.e. the norm squared) for orders \(k = 0,\;1,\; \ldots ,\;n \).

Usage

ultraspherical.inner.products(n,alpha)

Value

A vector with \(n + 1\) elements

1

inner product of order 0 orthogonal polynomial

2

inner product of order 1 orthogonal polynomial

...

n+1

inner product of order \(n\) orthogonal polynomial

Arguments

n

integer value for the highest polynomial order

alpha

numeric value for the polynomial parameter

Author

Frederick Novomestky fnovomes@poly.edu

Details

This function uses the same formula as the function gegenbauer.inner.products.

References

Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., NY.

Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics, John Wiley, New York, NY.

Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society Colloquium Publications, Providence, RI.

See Also

gegenbauer.inner.products

Examples

Run this code
###
### generate the inner products vector for the
### ultraspherical polynomials of orders 0 to 10.
### the polynomial parameter is 1.0
###
h <- ultraspherical.inner.products( 10, 1 )
print( h )

Run the code above in your browser using DataLab