ultraspherical.inner.products: Inner products of ultraspherical polynomials
Description
This function returns a vector with \(n + 1\) elements containing the inner product of
an order \(k\) ultraspherical polynomial, \(C_k^{\left( \alpha \right)} \left( x \right)\),
with itself (i.e. the norm squared) for orders \(k = 0,\;1,\; \ldots ,\;n \).
Usage
ultraspherical.inner.products(n,alpha)
Value
A vector with \(n + 1\) elements
1
inner product of order 0 orthogonal polynomial
2
inner product of order 1 orthogonal polynomial
...
n+1
inner product of order \(n\) orthogonal polynomial
This function uses the same formula as the function gegenbauer.inner.products.
References
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., NY.
Courant, R., and D. Hilbert, 1989. Methods of Mathematical Physics,
John Wiley, New York, NY.
Szego, G., 1939. Orthogonal Polynomials, 23, American Mathematical Society
Colloquium Publications, Providence, RI.
###### generate the inner products vector for the### ultraspherical polynomials of orders 0 to 10.### the polynomial parameter is 1.0###h <- ultraspherical.inner.products( 10, 1 )
print( h )