# NOT RUN {
## EXAMPLE 1: ----------------------
## It can be used in the same way as with OcpSdEwma passing the whole dataset as
## an argument.
## Generate data
set.seed(100)
n <- 180
x <- sample(1:100, n, replace = TRUE)
x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200
x[150] <- 170
df <- data.frame(timestamp = 1:n, value = x)
## Calculate anomalies
result <- OipSdEwma(
data = df$value,
n.train = 5,
threshold = 0.01,
l = 3
)
res <- cbind(df, result$result)
## Plot results
PlotDetections(res, print.time.window = FALSE, title = "SD-EWMA ANOMALY DETECTOR")
## EXAMPLE 2: ----------------------
## You can use it in an incremental way. This is an example using the stream
## library. This library allows the simulation of streaming operation.
# }
# NOT RUN {
# install.packages("stream")
library("stream")
## Generate data
set.seed(100)
n <- 500
x <- sample(1:100, n, replace = TRUE)
x[70:90] <- sample(110:115, 21, replace = TRUE)
x[25] <- 200
x[320] <- 170
df <- data.frame(timestamp = 1:n, value = x)
dsd_df <- DSD_Memory(df)
## Initialize parameters for the loop
last.res <- NULL
res <- NULL
nread <- 100
numIter <- n%/%nread
## Calculate anomalies
for(i in 1:numIter) {
# read new data
newRow <- get_points(dsd_df, n = nread, outofpoints = "ignore")
# calculate if it's an anomaly
last.res <- OipSdEwma(
data = newRow$value,
n.train = 5,
threshold = 0.01,
l = 3,
last.res = last.res$last.res
)
# prepare the result
if(!is.null(last.res$result)){
res <- rbind(res, cbind(newRow, last.res$result))
}
}
# plot
PlotDetections(res, title = "SD-EWMA ANOMALY DETECTOR")
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab