Learn R Programming

packDAMipd (version 1.1.0)

form_expression_mixed_model_lme4: Form expression to use with mixed models

Description

Form expression to use with mixed models

Usage

form_expression_mixed_model_lme4(
  param_to_be_estimated,
  dataset,
  fix_eff,
  fix_eff_interact_vars,
  random_intercept_vars,
  nested_intercept_vars_pairs,
  cross_intercept_vars_pairs,
  uncorrel_slope_intercept_pairs,
  random_slope_intercept_pairs,
  family,
  link
)

Value

result regression result with plot if success and -1, if failure

Arguments

param_to_be_estimated,

column name of dependent variable

dataset,

a dataframe

fix_eff,

names of variables as fixed effect predictors

fix_eff_interact_vars,

if interaction -true

random_intercept_vars,

names of variables for random intercept

nested_intercept_vars_pairs,

those of the random intercept variables with nested effect

cross_intercept_vars_pairs,

those of the random intercept variables with crossed effect

uncorrel_slope_intercept_pairs,

variables with correlated intercepts

random_slope_intercept_pairs,

random slopes intercept pairs - this is a list of paired variables

family,

family of distribution for non gaussian distribution of predicted variable

link,

link function for the variance

Details

Form the expression for mixed model

Examples

Run this code
# \donttest{
datafile <- system.file("extdata", "data_linear_mixed_model.csv",
package = "packDAMipd")
dt = utils::read.csv(datafile, header = TRUE)
formula <- form_expression_mixed_model_lme4("extro",
  dataset = dt,
  fix_eff = c("open", "agree", "social"),
  fix_eff_interact_vars = NULL,
  random_intercept_vars = c("school", "class"),
  nested_intercept_vars_pairs = list(c("school", "class")),
  cross_intercept_vars_pairs = NULL,
  uncorrel_slope_intercept_pairs = NULL,
  random_slope_intercept_pairs = NULL, family = "binomial", link = NA
)
# }

Run the code above in your browser using DataLab