- dataset
See Fujita2023, Shao2019 or vanderPloeg2024.
- minNumComponents
Minimum number of components (default 1).
- maxNumComponents
Maximum number of components (default 5).
- numFolds
Number of bootstrapped models to create.
- considerGroups
Consider subject groups in calculating sparsity (default FALSE)
- groupVariable
Column name in dataset$mode1 that should be used to consider groups (default "")
- colourCols
Vector of strings stating which column names should be factorized for colours per mode.
- legendTitles
Vector of strings stating the legend title per mode.
- xLabels
Vector of strings stating the x-axis labels per mode.
- legendColNums
Vector of integers stating the desired number of columns for the legends per mode.
- arrangeModes
Vector of boolean values per mode, stating if the loadings should be arranged according to colourCols (TRUE) or not (FALSE).
- method
Use ALS algorithm ("als", default) or use all-at-once optimization ("opt"). The all-at-once optimization is based on a nonlinear conjugate gradient method with Hestenes-Stiefel updates and the More-Thuente line search algorithm.
- ctol
Relative change in loss tolerated to call the algorithm converged in the ALS case (default 1e-4).
- maxit
Maximum number of iterations allowed without convergence in the ALS case (default 500).
- max_fn
Maximum number of function evaluations allowed without convergence in the OPT case (default 10000).
- rel_tol
Relative change in loss tolerated to call the algorithm converged in the OPT case (default 1e-8).
- abs_tol
Absolute loss tolerated to call the algorithm converged in the OPT case (default 1e-8).
- grad_tol
Tolerance on the two-norm of the gradient divided over the number of elements in the gradient in the OPT case (default 1e-8).
- numCores
Number of cores to use. If set larger than 1, it will run the job in parallel (default 1)