Learn R Programming

parameters (version 0.14.0)

bootstrap_parameters: Parameters bootstrapping

Description

Compute bootstrapped parameters and their related indices such as Confidence Intervals (CI) and p-values.

Usage

bootstrap_parameters(
  model,
  iterations = 1000,
  centrality = "median",
  ci = 0.95,
  ci_method = "quantile",
  test = "p-value",
  ...
)

Arguments

model

Statistical model.

iterations

The number of draws to simulate/bootstrap.

centrality

The point-estimates (centrality indices) to compute. Character (vector) or list with one or more of these options: "median", "mean", "MAP" or "all".

ci

Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to .95 (95%).

ci_method

The type of index used for Credible Interval. Can be "HDI" (default, see hdi), "ETI" (see eti), "BCI" (see bci) or "SI" (see si).

test

The indices to compute. Character (vector) with one or more of these options: "p-value" (or "p"), "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding bayestestR function is called (e.g. rope or p_direction) and its results included in the summary output.

...

Arguments passed to or from other methods.

Value

A data frame summarizing the bootstrapped parameters.

Using with <code>emmeans</code>

The output can be passed directly to the various functions from the emmeans package, to obtain bootstrapped estimates, contrasts, simple slopes, etc. and their confidence intervals. These can then be passed to model_parameter() to obtain standard errors, p-values, etc (see example).

Note that that p-values returned here are estimated under the assumption of translation equivariance: that shape of the sampling distribution is unaffected by the null being true or not. If this assumption does not hold, p-values can be biased, and it is suggested to use proper permutation tests to obtain non-parametric p-values.

Details

This function first calls bootstrap_model to generate bootstrapped coefficients. The resulting replicated for each coefficient are treated as "distribution", and is passed to describe_posterior() to calculate the related indices defined in the "test" argument.

Note that that p-values returned here are estimated under the assumption of translation equivariance: that shape of the sampling distribution is unaffected by the null being true or not. If this assumption does not hold, p-values can be biased, and it is suggested to use proper permutation tests to obtain non-parametric p-values.

References

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application (Vol. 1). Cambridge university press.

See Also

bootstrap_model, simulate_parameters, simulate_model

Examples

Run this code
# NOT RUN {
if (require("boot", quietly = TRUE)) {
  set.seed(2)
  model <- lm(Sepal.Length ~ Species * Petal.Width, data = iris)
  b <- bootstrap_parameters(model)
  print(b)

  if (require("emmeans")) {
    est <- emmeans(b, trt.vs.ctrl ~ Species)
    print(model_parameters(est))
  }
}
# }

Run the code above in your browser using DataLab